
COMUNE DI ASCIANO COMUNE DI RAPOLANO TERME

Provincia di Siena

PIANO STRUTTURALE INTERCOMUNALE

Legge Regionale 65/2014

Comune di Asciano

Fabrizio Nucci Sindaco

Comune di Rapolano Terme

Alessandro Starnini Sindaco

Responsabile del Procedimento

Rolando Valentini

Garante dell'informazione

Maria Alice Fiordiponti

Ufficio di Piano e Progettazione Urbanistica

Rolando Valentini - coordinamento

Leonardo Carta Laura Tavanti

Collaboratori

Gabriele Giardini Silvia Bertocci
Caterina Machetti Manuela Fontanive

Sauro Malentacchi Alessia Neri

Patrizia Sodi

Valutazione Ambientale Strategica

Annalisa Pirrello Lucia Ninno - collaboratore

Agricoltura, Foreste e Biodiversità

Elena Lanzi

Andrea Vatteroni - collaboratore

Indagini Geologico-Tecniche

Michele Sani - Terra & Opere srl Andrea Caselli - *collaboratore*

Indagini Idrologico-Idrauliche

Alessio Gabbrielli

Archeologia

Cristina Felici - Archeo Tech and Survey srl Francesco Brogi *- collaboratore*

Partecipazione e Comunicazione

Anna Lisa Pecoriello - MHC Progetto territorio Adalgisa Rubino - MHC Progetto territorio

Collaudatore dei dati

Luca Gentili - LdP progetti gis

Tomi dei dati di base Comune di Rapolano Terme

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 121 RT

RIFERIMENTO PRATICA PDC 06/2010

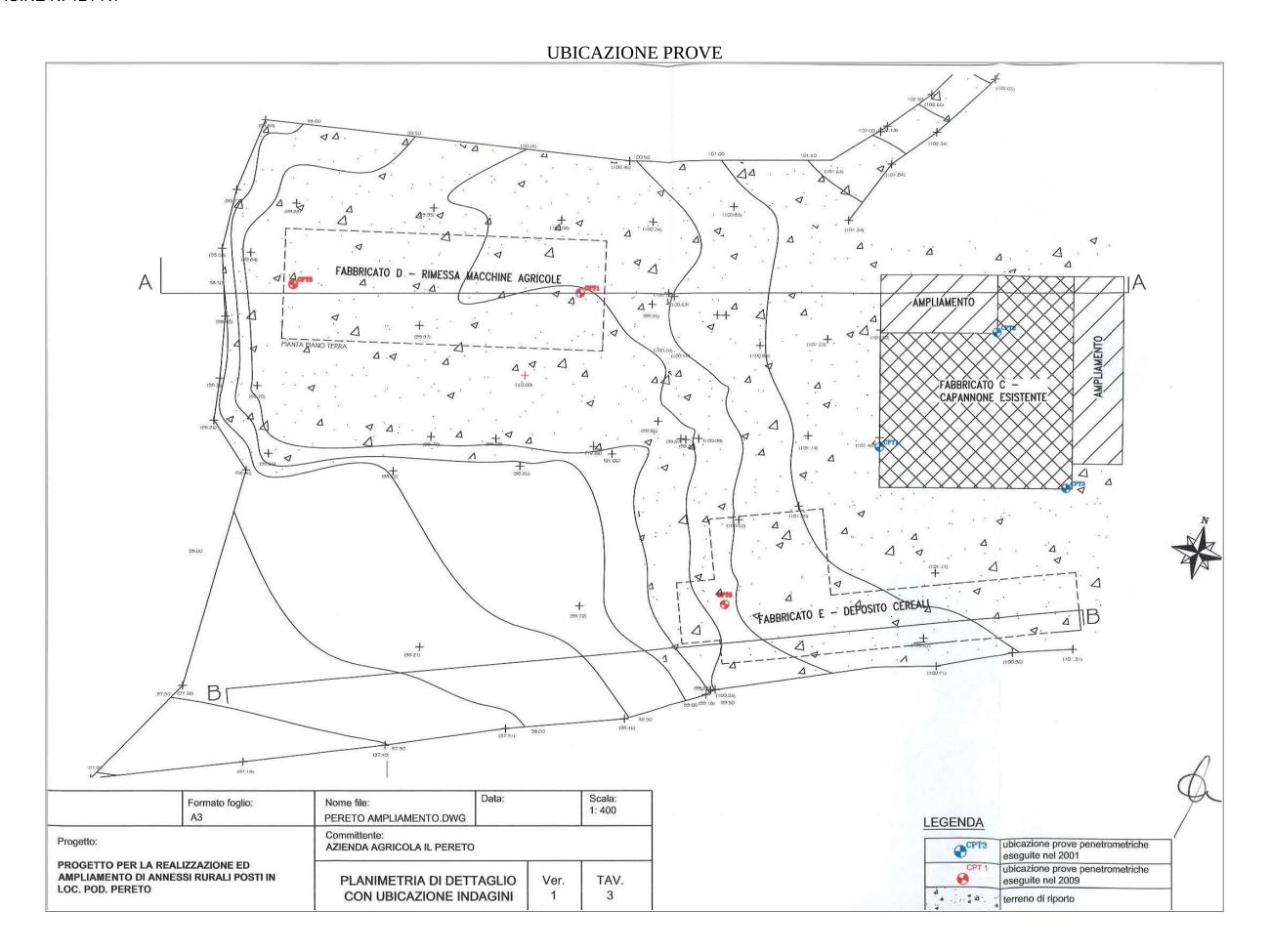
EDILIZIA

LOCALITÀ PODERE PERETO

RAPOLANO TERME

PROGETTO REALIZZAZIONE ED

AMPLIAMENTO DI ANNESSI

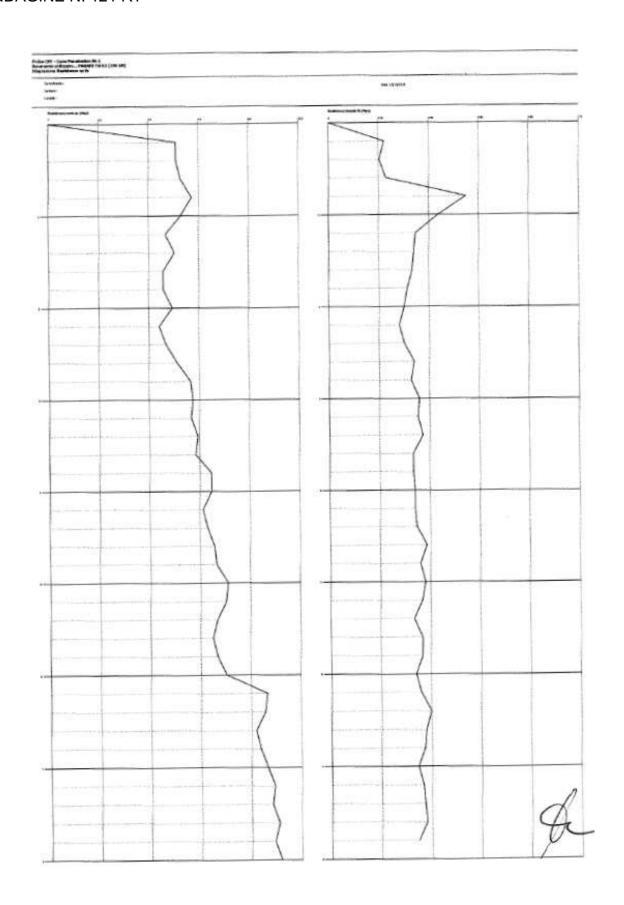

RURALI

NUMERO E TIPO DI N. 6 CPT INDAGINE

DATA INDAGINE OTTOBRE 2001

OTTOBRE 2009

NOTE -

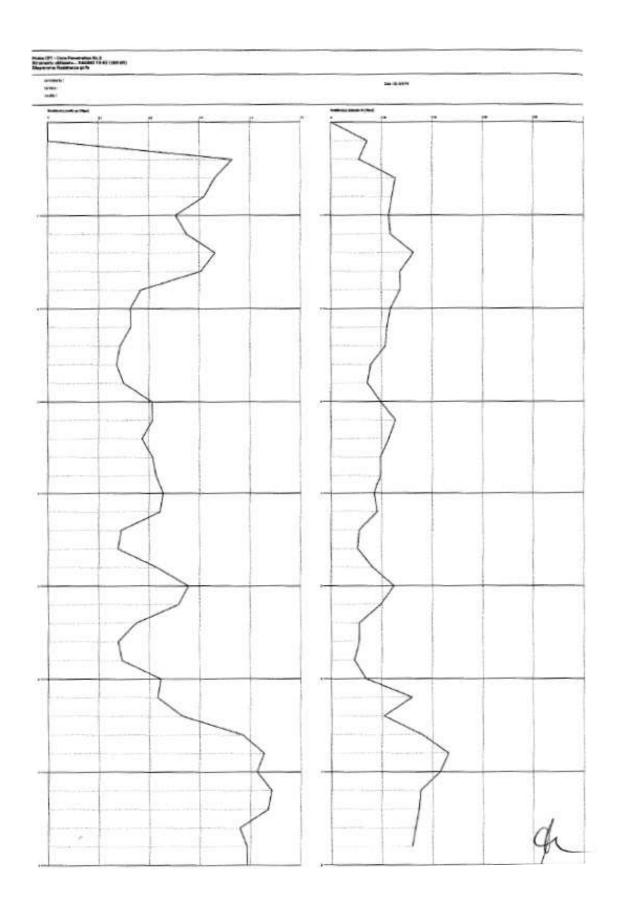


RISULTATI PROVE CPT 1 (2009)

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 15/10/2009 8.00 mt

Profondità (m)	Lettura punta (Mpa)	Lettura laterale (Mpa)	qc (Mpa)	fs (Mpa)	qc/fs Begemann	fs/qcx100 (Schmertmann
0.20	0.0	0.0	5.5898	0.2223	25.15	3.9
0.40	5.59	8.924	5.6033	0,2027	27.64	3.6
0.60	5.786	8.826	5.7995	0,2288	25.35	3.9
0.80	6.276	9.709	6.2898	0.5492	11.45	8.7
1.00	5.786	14.024	5.7995	0.438	13.24	8.7 7.5 6.7
1.20	5,099	11.67	5.1265	0.3465	14.8	6.7
1.40	5.492	10,689	5.5188	0.34	16.23	6.1
1.60	5.001	10.101	5.0285	0.3334	15.08	6.6 6.2 5.5 5
1.80	5.001	10.003	5.0285	0.3138	16.02	6.2
2.00	5,394	10,101	5.4207	0.3007	18.03	5.5
2,20	4,805	9.316	4.8459	0.2811	17.24	5.
2.40	5.099	9.316	5.1401	0.3007	17.09	5.8
2.60	5.59	10.101	5.6304	0.34	16.56	6.0
2.80	6.178	11.278	6.2188	0.3269	19.02	5.2
3.00	6.276	11.18	6.3169	0.3596	17.57	5.6
3.20	6,178	11.572	6.2323	0.353	17.66	5.6
3.40	6.472	11.768	6.5265	0.3727	17.51	5.7
3.60	6.374	11.964	6.4285	0.3334	19.28	5.1
3.80	7.061	12.062	7.1149	0.3334	21.34	4.6
4.00	7.061	12,062	7.1149	0.34	20.93	4.7
4.20	6.669	11.768	6.7362	0.34	19.81	5.0
4.40	6.865	11.964	6.9323	0.3465	20.01	5.
4.60	7.159	12,356	7.2265	0.3857	18.74	5.3
4.80	7,257	13.043	7.3246	0.3596	20.37	4.9
5.00	7.747	13.141	7.8149	0.3792	20.61	4.8
5.20	7.649	13.337	7.7304	0.3661	21.12	4.7
5.40	7,257	12.749	7.3381	0.3334	22.01	4.5
5.60	7.061	12.062	7.142	0.3661	19.51	5.1
5.80	7.257	12.749	7.3381	0.3661	20.04	4.9
6.00	7.649	13.141	7.7304	0.34	22,74	4.
6.20	9.414	14.514	9.5091	0.3596	26.44	3,7
6.40	9.316	14.71	9.411	0.3988	23.6	4.2
6.60	8.924	14.906	9.0188	0.3792	23.78	4.
6.80	9.12	14.808	9.2149	0.3727	24.72	4.0
7.00	9,414	15.004	9.5091	0.3465	27.44	3.6
7.20	9.709	14.906	9.8168	0.3661	26.81	3.7
7.40	9.611	15.102	9.7188	0.3727	26.08	3.8
7.60	9.905	15.495	10.013	0,3792	26,41	3.7
7.80	9.709	15.396	9.8168	0.3465	28.33	3.5
8.00	10.003	15,2	10.111	0.0		Ŋ

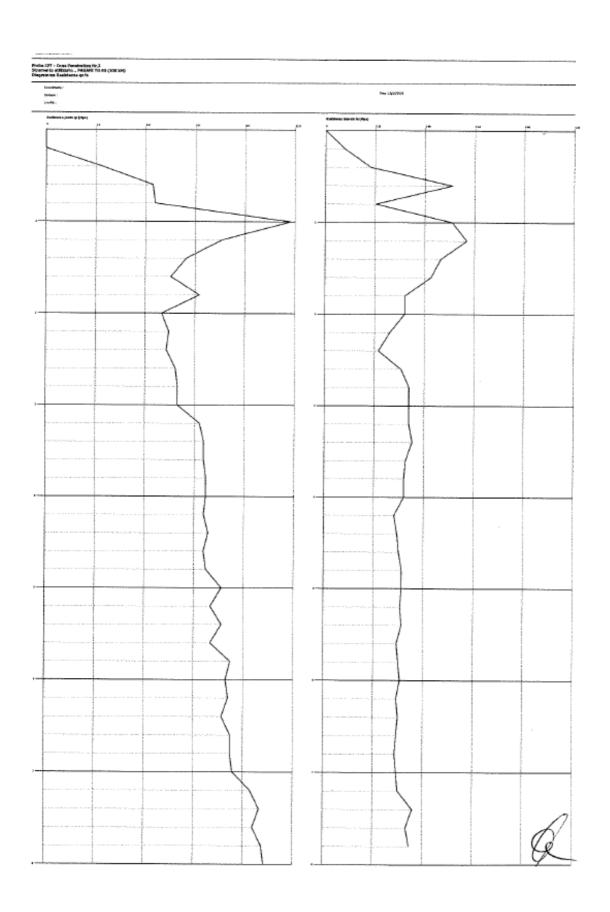

CPT 2 (2009)

PROVA ... Nr.2

Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 15/10/2009 8.00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qex100
(m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	Begemann	/ (Schmertmant
0.20	0.0	0.0	0.0135	0.1438	0.09	/ 1065.1
0.40	5.099	7.257	5.113	0.1111	46.02	2.1
0.60	4.609	6.276	4.6227	0.255	18.13	5.5
0.80	4,315	8.14	4.3285	0.2419	17.89	5.5
1.00	3.53	7.159	3.5439	0.2288	15.49	6.4
1.20	3.825	7.257	3.8517	0.2354	16.36	6.1
1.40	4.609	8.14	4.6362	0.3269	14.18	7.0
1.60	4.217	9.12	4.2439	0.2746	15.45	6.4
1.80	2.55	6.669	2.5768	0.2746	9.38	10.6

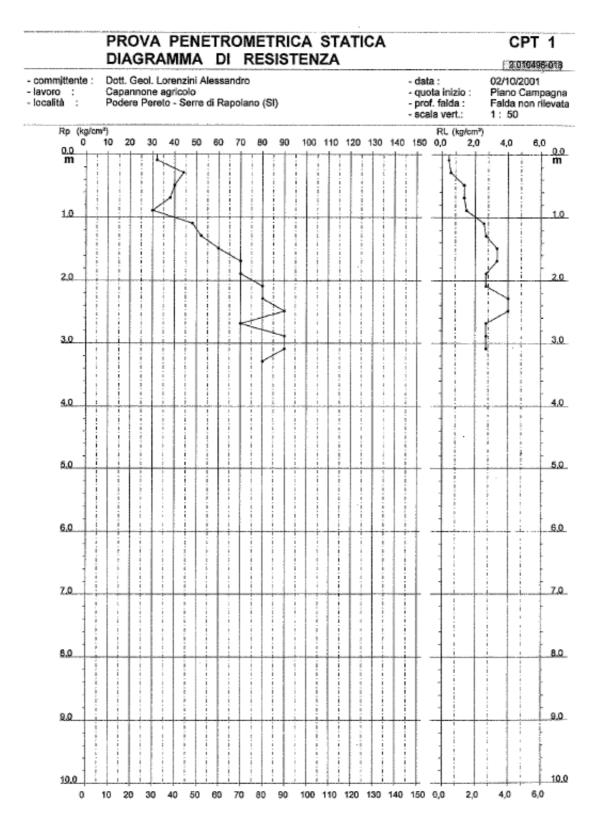
2.00	2.256	6.374	2.2826	0.2354	9.7	10.31
2.20	2.256	5.786	2.2961	0.2223	10.33	9.68
2.40	1.961	5.296	2.0019	0.2157	9.28	10.77
2.60	1.863	5.099	1.9039	0.1569	12.13	₹ 8.24
2.80	2.059	4.413	2.1	0.1438	14.6	6.85
3.00	2.844	5.001	2.8845	0.1961	14.71	6.8
3.20	2.844	5.786	2.8981	0.255	11.37	8.8
3.40	2.55	6.374	2.6039	0.2288	11.38	8.79
3.60	2.844	6.276	2.8981	0.1961	14.78	6.77
3.80	2.942	5.884	2.9961	0.1961	15.28	6.55
4.00	3.138	6.08	3.1923	0.17	18.78	5.33
4.20	3.04	5.59	3.1077	0.1831	16.97	5.89
4.40	1.961	4.707	2.029	0.1111	18.26	5.48
4.60	1.863	3.53	1.9309	0.1046	18.46	5.42
4.80	2.942	4.511	3.0097	0.1634	18.42	5.43
5.00	3.825	6.276	3.8923	0.2484	15.67	6.38
5.20	3.53	7.257	3.6116	0.1961	18.42	5.43
5.40	2,354	5.296	2.4348	0.1111	21.92	4.56
5.60	1.863	3.53	1.9445	0.1111	17.5	5.71
5.80	1.961	3.628	2.0425	0.0915	22.32	4.48
6.00	3.04	4.413	3.1213	0.1373	22.73	4.4
6.20	2.942	5.001	3.0367	0.3204	9.48	10.55
6.40	3.628	8.434	3.7232	0.2092	17.8	5.62
6.60	5.296	8.434	5.3903	0.3596	14.99	6.67
6.80	5.884	11.278	5.9787	0.4642	12.88	7.76
7.00	5.688	12.651	5.7826	0.4315	13.4	7.46
7.20	6.08	12.553	6.1884	0.353	17.53	5.7
7.40	5.982	11.278	6.0903	0.3465	17.58	5.69
7.60	5.198	10.395	5.3058	0.3334	15.91	6.28
7.80	5.394	10.395	5.5019	0.3204	17.17	5.82
8.00	5.394	10.199	5.5019	0.0		0.0

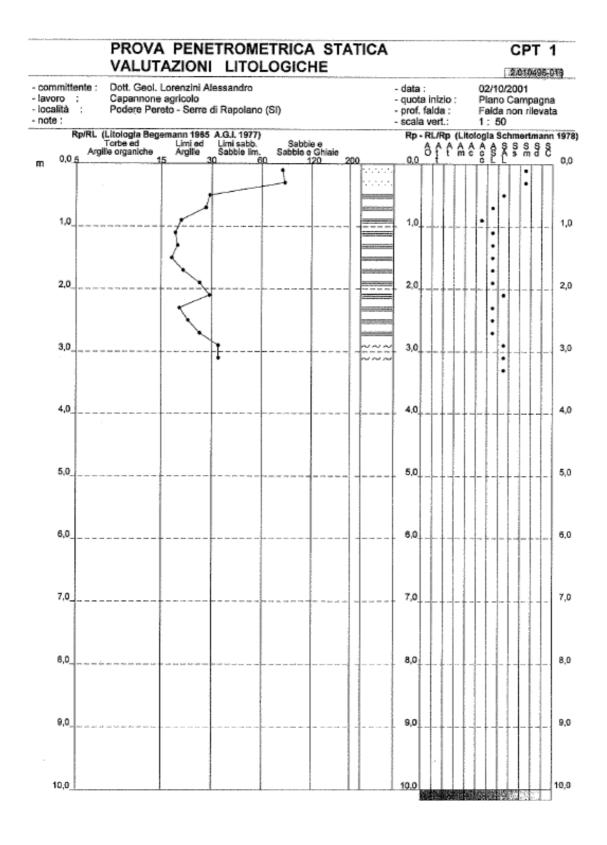

CPT 3 (2009)

PROVA ... Nr.3

Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 15/10/2009 8.00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs fs	qc/fs	fs/qcx100
(m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	Begemann	(Schmertmann
0.20	0.0	0.0	0.0	0.0785	0.0	`
0.40	2.452	3.628	2.4652	0.1831	13.47	7.43
0.60	4.707	7.453	4.7207	0.5099	9.26	10.5
0.80	4.805	12.454	4.8188	0.2027	23.78	4.2
1.00	10.787	13.827	10.8008	0.5099	21.18	4.77
1.20	7.747	15.396	7.7743	0.5688	13.67	7.32
1.40	6.178	14.71	6.2053	0.4642	13.37	7.48
1.60	5.492	12.454	5.5188	0.425	12.99	7.
1.80	6.767	13.141	6.7937	0.3204	21.21	4.72
2.00	5.099	9.905	5.1265	0.3204	16.0	6.25
2.20	5.394	10.199	5.4343	0.2615	20.78	4.8
2.40	5.296	9.218	5.3362	0.2157	24.73	4.04
2.60	5.688	8.924	5.7285	0.3073	18.64	5.30
2.80	5.786	10.395	5.8265	0.34	17.14	5.83
3.00	5.786	10.885	5.8265	0.34	17.14	5.83
3.20	6.767	11.866	6.8207	0.34	20.06	4.9
3.40	6.963	12.062	7.0169	0.353	19.88	5.03
3.60	6.963	12.258	7.0169	0.3269	21.47	4.66
3.80	7.061	11.964	7.1149	0.3204	22.21	4.5
4.00	7.061	11.866	7.1149	0.3204	22.21	4.5
4.20	6.963	11.768	7.0304	0.2811	25.01	<i>A</i> F.(
4.40	7.159	11.376	7.2265	0.2942	24.56	4.07
4.60	6.963	11.376	7.0304	0.3007	23.38	4.28
4.80	7.061	11.572	7.1285	0.3138	22.72	4.4
5.00	7.747	12.454	7.8149	0.3138	24.9	4:02
5.20	7.257	11.964	7.3381	0.3073	23.88	4.19

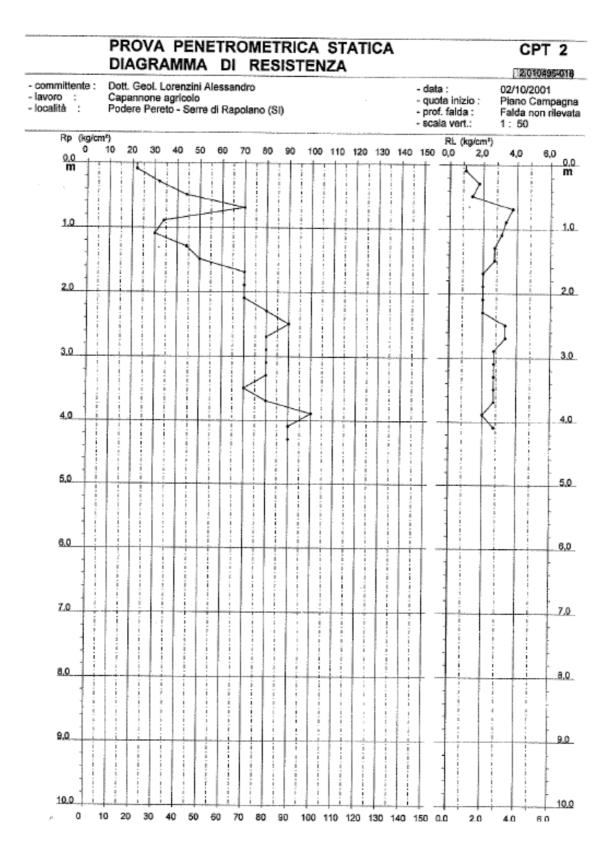

5.40	7.747	12.356	7 0005	0.07431		
5.60	7.257	11.964	7.8285	0.3138	24.95	
5.80	8.14		7.3381	0.2942	24.94	
6.00		12.553	8.2207	0.3007	27.33	
6.20	7.943	12.454	8.0246	0.3073	26.12	
6.40	8.041	12.651	8.1362	0.2942	27.66	
	7.747	12.16	7.842	0.3007	26.08	
6.60	8.14	12.651	8.2343	0.2942	27.99	
6.80	8.14	12.553	8.2343	0.2877	28.63	
7.00	8.238	12.553	8.3323	0.2942	28.32	
7.20	9.022	13.435	9.1304	0.3007	30.36	
7.40	9.414	13.925	9.5226	0.3596	26.48	
7.60	9.12	14.514	9.2285	0.3334	27.68	
7.80	9.512	14.514	9.6207	0.3465	27.77	-
8.00	9.611	14.808	9.7188	0.0	21.11	



CPT 1 (2001)

										RICA SEOT										PT 10496-1	1
committen lavoro : località : note :	ite :	C	ott. Ge apann odere	one	agric	olo			(SI)						ota in of. falo	da:		02/10 Piano Falda 1	Can	npagn:	a a
						NA	UFA	COES	MA					VAT.	RA	SRA	YUL	ARE			M
	Rp g/cm²	Rp/Ri (-)	Natura Litol.	Y t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25 m²	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3a (*)	ø4s (°)	ødm (°)	ømy (°)	Amex/g (-)	E'50 kg/		no m²
0,20 0,60 0,80 1,00 1,20 1,40 1,80 2,20 2,40 2,40 2,80 3,00	32 44 40 38 30 48 52 60 70 80 90 90 90 90	80 82 30 28 20 19 18 21 26 30 22 26 34	3:::: 3:::: 4:::: 4:::: 4::: 4::: 4::: 4::: 4::: 4::: 3:::: 3:::: 3::::	1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	0.04 0.07 0.115 0.122 0.033 0.444 0.555 0.633 0.0448 0.555 0.633	1,33 1,27 1,00 1,80 1,73 2,00 2,33 2,67 2,67 3,00 2,33	99,9 91,9 51,7 74,1 67,6 68,4 71,6 62,7 659,0 61,9 41,2	27 215 170 272 295 340 397 453 453 510 397	340 323 255 408 442 510 595 680 680 765 595	120 114 90 144 156 180 210 240 240 240 240 270 210	100 100 94 85 72 83 84 86 84 86 84 86 83 87 87	42 41 40 40 40 40 40 40 40 39 40 39	43 43 41 41 41 42 41 42 41 42 41 41 41 41	45 44 43 43 43 43 43 43 43 43 43 43 43 43	48 46 54 55 55 55 45 45 45 45 45 45 45 45 45	45 43 41 40 40 40 40 40 40 40 40 39 39	29 31 30 39 31 32 32 32 33 33 33 33 33	0,258 0,258 0,237 0,164 0,201 0,198 0,203 0,211 0,203 0,210 0,177 0,199 0,194	53 73 67 63 50 80 87 100 117 117 133 133 150 117 150	110 13 100 13 95 1	20 14 90 44 56 10 10 10 10 10 10

		ROVA ETTUF						RESIS	TENZ	Λ	PT 1
- committe - lavoro - località - note :	; C	ott. Geol. L apannone a odere Pere	agricolo					- data : - quota ii - prof. fal - pagina	da:	02/10/200 Piano Ca Falda noi 1	01 mpagna
prf	LP	LL	Rp	RL.	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²		m	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	
0,20 0,40 0,60	16,0 22,0 20,0	16,0 25,0 24,0	32,0 44,0 40,0	0,40 0,53 1,33	80,0 82,0 30,0	2,00 2,20 2,40	35,0 40,0 40,0	60,0 60,0 60,0	70,0 80,0 80,0	2,67 2,67 4.00	26,0 30,0 20,0
0,80 1,00 1,20	19,0 15,0 24,0	29,0 25,0 35,0	38,0 30,0 48,0	1,33 1,47 2,53	28,0 20,0	2,60 2,80	45,0 35,0	75,0 65,0	90,0 70,0	4,00 2,67	22,0 26,0
1,40 1,60 1,80	26,0 30,0 35,0	45,0 50,0 60,0	52,0 60,0 70,0	2,67 3,33 3.33	19,0 19,0 18,0 21.0	3,00 3,20 3,40	45,0 45,0 40,0	65,0 65,0 60,0	90,0 90,0 80,0	2,67 2,67	34,0 34,0



CPT 2 (2001)

		PROVA LETTUR							TENZ	Δ	PT 2
committe lavoro località note :	: (Dott. Geol. Le Capannone a Podere Peret	agricolo					- data : - quota ir - prof. fal - pagina	da:	02/10/20/ Piano Ca Falda noi 1	mpagna
prf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	-	<u>m</u>	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	
0,20	11,0	11,0	22,0	0,93	24,0	2,40	40,0	55,0	80,0	2.00	40,0
0,40	16,0	23,0	32,0	1,73	18,0	2,60	45,0	60,0	90,0	3,33	27,0
0,60	22,0	35,0	44,0	1,33	33,0	2,80	40,0	65,0	80,0	3,33	24,0
0,80	35,0	45,0	70,0	3,73	19,0	3,00	40,0	65.0	80.0	2,67	30,0
1,00	17,0	45,0	34,0	3,33	10,0	3,20	40,0	60,0	80,0	2,67	30,0
1,20	15,0	40,0	30,0	3,07	10,0	3,40	40,0	60,0	80,0	2,67	30,0
1,40	22,0	45,0	44,0	2,67	16,0	3,60	35,0	55,0	70.0	2,67	26,0
1,60	25,0	45,0	50,0	2,67	19,0	3,80	40,0	60.0	80,0	2,67	30,0
1,80	35,0	55,0	70,0	2,00	35,0	4,00	50,0	70,0	100,0	2,00	50,0
2,00	35,0	50,0	70,0	2,00	35,0	4.20	45,0	60,0	90,0	2,67	34,0
2,20	35,0	50,0	70,0	2,00	35,0	4,40	45,0	65,0	90.0		

PROVA PENETROMETRICA STATICA CPT 2 TABELLA PARAMETRI GEOTECNICI 2.010496-013 - committente : Dott. Geol. Lorenzini Alessandro - data : 02/10/2001 Capannone agricolo Podere Pereto - Serre di Rapolano (SI) - lavoro - quota inizio : Piano Campagna Falda non rilevata - località - prof. falda : - note : - pagina NATURA GRANULARE NATURA COESIVA Cu kg/cm² 0,85 1,07 Natura Litol. ۲۰ t/m³ OCR (-) E'50 E'25 Mo kg/cm² kg/cm² 22 32 44 70 34 45 50 70 70 70 80 80 80 80 80 80 90 90 0.04 0.07 0.15 0.19 0.26 0.33 0.37 0.44 0.52 0.55 0.67 0.74 0.74 0.74 144 181 66 96 0,258 0,245 0,249 0,258 0,151 0,183 0,211 0,203 0,203 0,203 0,203 0,181 0,158 0,168 0,168 0,168 0,169 24 18 33 19 10 10 16 19 35 35 35 40 27 24 30 30 30 30 30 30 34 99,9 99,9 216 272 37 53 73 117 57 50 73 117 117 117 133 150 133 133 167 130 150 2,33 1,100 1,47 1,67 3,00 2,67 2,67 2,67 2,67 2,67 2,67 397 193 170 249 283 210 102 90 132 150 595 289 255 374 426 61,9 48,7 44,7 41,2 38,2 30,1 33,2 510 453 453 453 453 453 453 --765 680 680 680 595 680 270 240 240 240 240 210 240

CPT 3 (2001)

		PROVA LETTUR							TENZ	۸	PT 3			
 committe lavoro località note ; 	:	Dott. Geol. L Capannone : Podere Pere	agricolo					- data : - quota ir - prof. fal - pagina	da :					
prf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI			
<u>m</u>	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	*	m_	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²				
0,20	10,0		20,0	0,80	25,0	2,40	22,0	40,0	44,0	2,00	22,0			
0,40	13,0		26,0	0,80	32,0	2,60	25,0	40,0	50,0	2,67	19,0			
0,60	16,0		32,0	3,20	10,0	2,80	30,0	50,0	60,0	2,00	30,0			
0,80	16,0		32,0	2,53	13,0	3,00	35,0	50,0	70,0	2,00	35,0			
1,00	16,0	35,0	32,0	2,53	13,0	3,20	35,0	50,0	70,0	2,00	35,0			
1,20	16,0	35,0	32,0	3,87	8,0	3,40	35,0	50,0	70,0	2,00	35.0			
1,40	16,0	45,0	32,0	2,40	13,0	3,60	35,0	50,0	70,0	2,00	35.0			
1,60	17,0	35,0	34,0	2,67	13,0	3,80	30,0	45,0	60,0	2.00	30.0			
1,80	20,0	40,0	40,0	2,27	18.0	4,00	40,0	55.0	80.0	1,33	60,0			
2,00 2,20	18,0 20,0	35,0 35,0	36,0 40,0	2,00 2,40	18,0 17,0	4,20	50,0	60,0	100,0					

		F	RO AB	EL.	A P	EN! PA	ETR Rai	OM IET	ETI RI (RICA GEO	ST	ATI NIC	CA I				·····		PT	_
- committe - lavoro - località - note :	ente : : :	č	apanr	ione	agric	olo:	di Ra		(SI)			•		- pr		:	02/10 Pland Falda	0/200 c Cai	npaq	na
Prof. m 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.20 2.40 2.60 2.80 3.00 3.00 3.00 4.20	Rp kg/cm ² 20 28 32 32 32 32 32 34 44 45 60 670 70 68 60 100	Rp/Ri (-) 25 32 10 13 13 13 18 17 22 19 30 35 35 33 30 60	Litol, 4/:/: 3::::	Ym 856,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855 1,855,855	PYOF 0407115 0.0071 0.115 0.0071 0.115 0.0071 0.1226 0.033 0.044 0.052 0.055 0.63 0.670 0.74 0.78	Cu kg/cm² 0,80 1,07 1,07 1,07 1,133 1,23 1,27 2,00 = 2,00	99,9 99,9 74,1 44,7 33,6 33,6 27,3 27,3 27,7 28,7 28,7 28,7 28,7 28,7 28,7 28,7	Eu50 kg/ 138 181 181 181 181 181 1227 227 249 283 340	Eu25	Mo kg/cm² 60 969 969 961 120 120 132 150 150 150 150 150 150 150 150 150 150	Dr % 97 899 879 794 770 665 667 773 771 663 672 778	ø1s (°) 422 440 339 38 337 337 337 338 38 38 38 38 38 38 38 38 38 38 39 39	92s (*) 433 442 441 440 399 399 399 399 440 440 440 440 440 440 440 440 440 4		# (*) 46 45 44 44 44 44 44 44 44 44 44 44 44 44	######################################	Amaz/g (-) 0.248 0.220 0.211 0.158 0.171 0.143 0.151 0.134 0.161 0.161 0.161 0.162 0.163 0.163 0.163 0.163 0.163 0.163	E'50 kg 33 43 553 553 553 660 673 83 1017 1177 1177 103 1167	50 65 80 80 80 80 85 100 110 125 175 175 175 175 175 175 175 175 175 17	Mo p/cm² 60 788 96 96 96 96 102 120 120 120 1210 1210 1210 120 120

DIAGRAMMA DI RESISTENZA 2.010496-018 - committente : Dott. Geol. Lorenzini Alessandro 02/10/2001 - data : Capannone agricolo Podere Pereto - Serre di Rapolano (SI) - quota inizio : - prof. falda : - lavoro : Piano Campagna Falda non rilevata - località : - scala vert.: 1:50 RL (kg/am²) Rp (kg/cm²) 0 20 30 40 50 60 70 90 100 110 120 130 140 150 0,0 4,0 6,0 0,0 **m** 0.0 m 1.0 1.0 2.0 2,0 3.0 3.0 4.0 4.0 5.0 5,0 6,0 6.0 7.0 7.0 8,0 8,0 9,0 9,0 10,0 10,0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 0,0

PROVA PENETROMETRICA STATICA

CPT 3

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 122 RT

RIFERIMENTO PRATICA PDC 08/2010

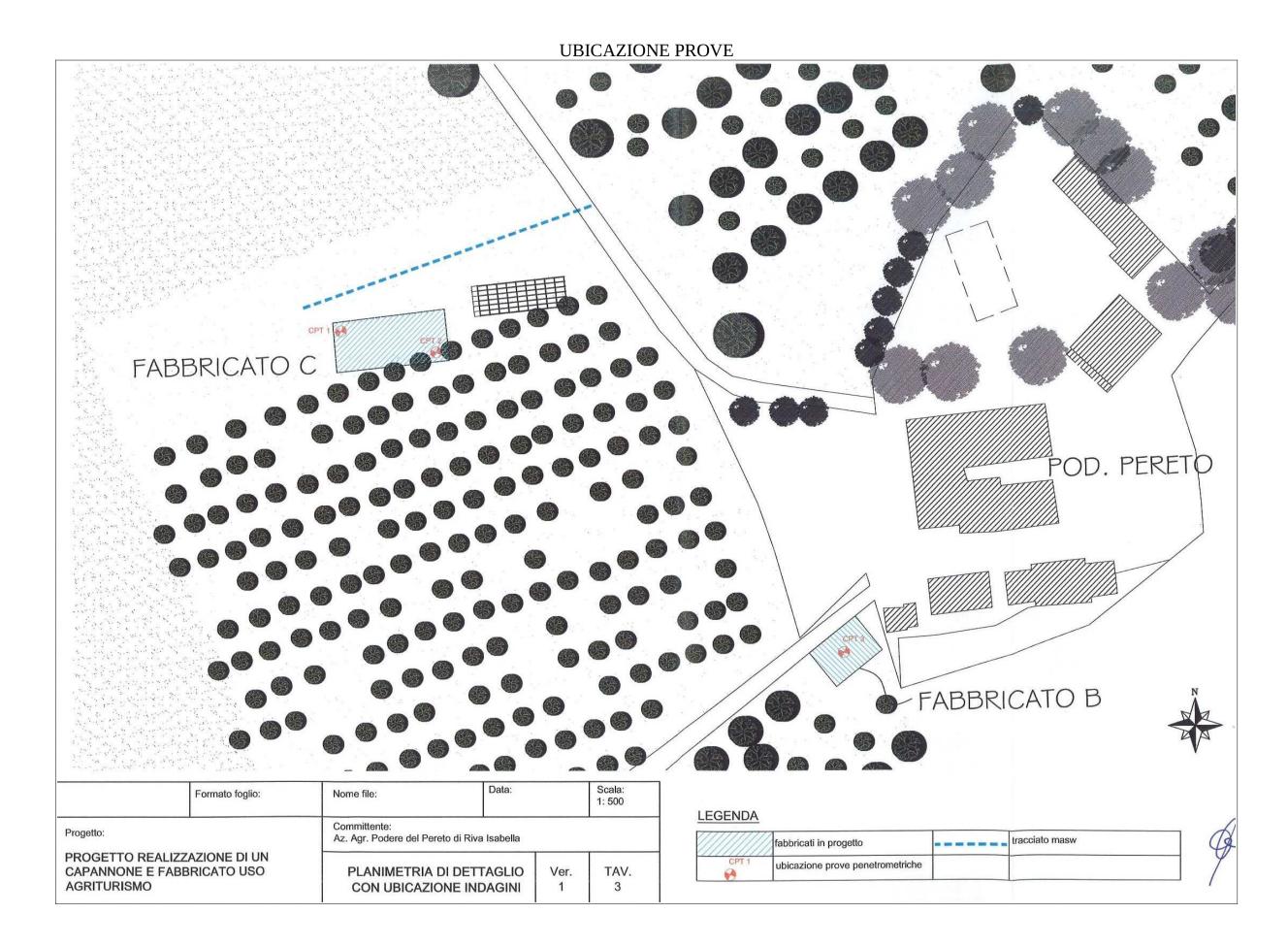
EDILIZIA

LOCALITÀ PODERE PERETO

REALIZZAZIONE DI UN PROGETTO

> **FABBRICATO PER USO** AGRITURISTICO E DI UN

CAPANNO

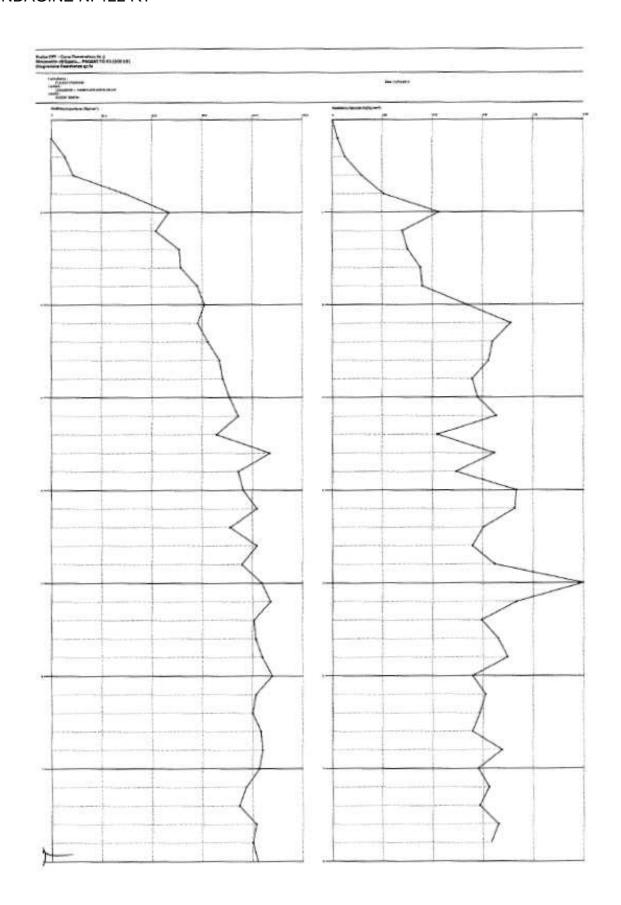

NUMERO E TIPO DI N. 3 CPT

INDAGINE N. 1 MASW

N. 1 HVSR

DATA INDAGINE APRILE 2010

NOTE -

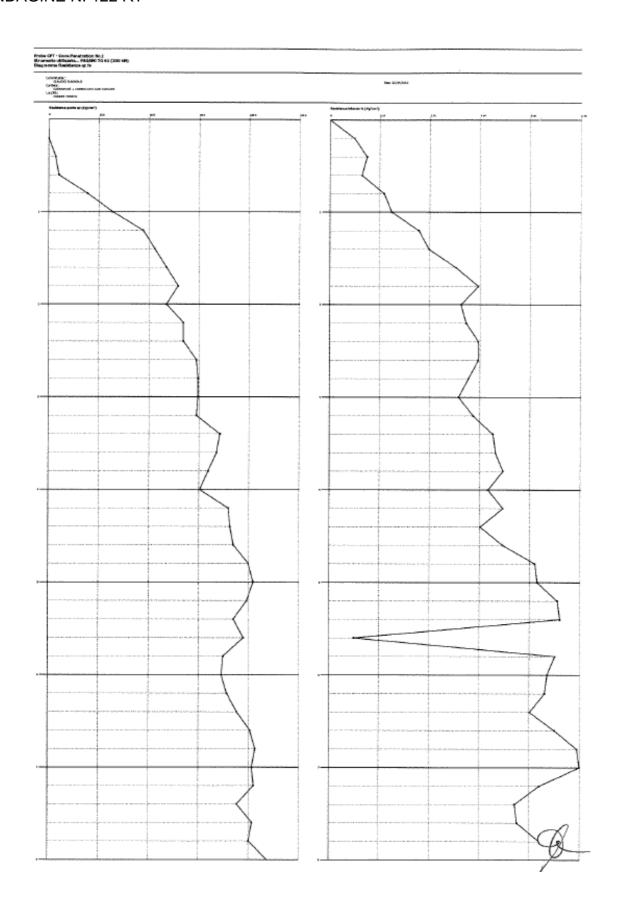


RISULTATI PROVE CPT 1

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 20/04/2010 8.00 mt

fs/qcx100 (Schmertmann	qc/fs Begemann	fs (Kg/cm²)	qc (Kg/cm²)	Lettura laterale (Kg/cm²)	Lettura punta (Kg/cm²)	Profondità (m)
144.9	0.69	0.2	0.138	0.0	0.0	0.20
5.7	17.44	0.4667	8.138	11.0	8.0	0.40
8.1	12.32	1.0667	13.138	20.0	13.0	0.60
4.2	23.64	1.8667	44.138	60.0	44.0	0.80
5.5	18.14	3.8667	70.138	98.0	70.0	1.00
4.0	24.58	2.5333	62,276	120.0	62.0	1.20
3.5	27.91	2.7333	76.276	114.0	76.0	1.40
4.1	24.15	3.2	77.276	118.0	77.0	1.60
3.7	26.72	3.2667	87.276	135.0	87.0	1.80
5.3	18.76	4.8667	91.276	140.0	91.0	2.00
7.	13.52	6.4667	87.414	160.0	87.0	2.20
6.2	16.11	5.8	93,414	190.0	93.0	2.40
5.6	17.72	5.6667	100.414	187.0	100.0	2.60
4.9	20.21	5.0667	102.414	187.0	102.0	2.80
4.9	20.21	5.2667	106,414	182.0	106.0	3.00
5.3	18.8	5.9333	111.552	190.0	111.0	3.20
3.8	25.93	3.8	98.552	187.0	98.0	3,40
4.4	22.25	5.8667	130.552	187.0	130.0	3.60
4.	24.97	4.4667	111.552	199.0	111.0	3.80
5.8	17.18	6,6667	114,552	181.0	114.0	4.00
5.3	18.59	6.6	122.69	222.0	122.0	4.20
5.1	19.52	5.4667	106.69	205.0	106.0	4.40
4.1	24.21	5,0667	122.69	204.0	122.0	4.60
5.1	19.38	5.8667	113.69	189.0	113.0	4.80
7.2	13.86	9.0667	125.69	213.0	125.0	5.00
5	19.62	6.6667	130.828	266.0	130.0	5.20
4.4	22.38	5.4	120.828	220.0	120.0	5.40
4.9	20.3	6.0	121.828	202.0	121.0	5.60
5.0	19.87	6.3333	125.828	215.0	125.0	5.80
3.8	26.02	5.0667	131.828	226.0	131.0	6.00
4.5	22.04	5.5333	121,966	197.0	121.0	6.20
4.4	22.49	5.3333	119.966	202.0	119.0	6.40
4.0	24.66	5.0667	124.966	204.0	124.0	6.60
4.8	20.54	6.1333	125.966	201.0	125.0	6.80
4.2	23.54	5.2667	123.966	215.0	123,0	7.00
4.8	20.49	5.6667	116.104	194.0	115.0	7.20
4.7	21.02	5.3333	112.104	196.0	111.0	7.40
// 4.9	20.35	6.0	122.104	201.0	121.0	7.60
(/) 4.7	20.95	5.7333	120.104	209.0	119.0	7.80
VA 0		0.0	123.104	208.0	122.0	8.00

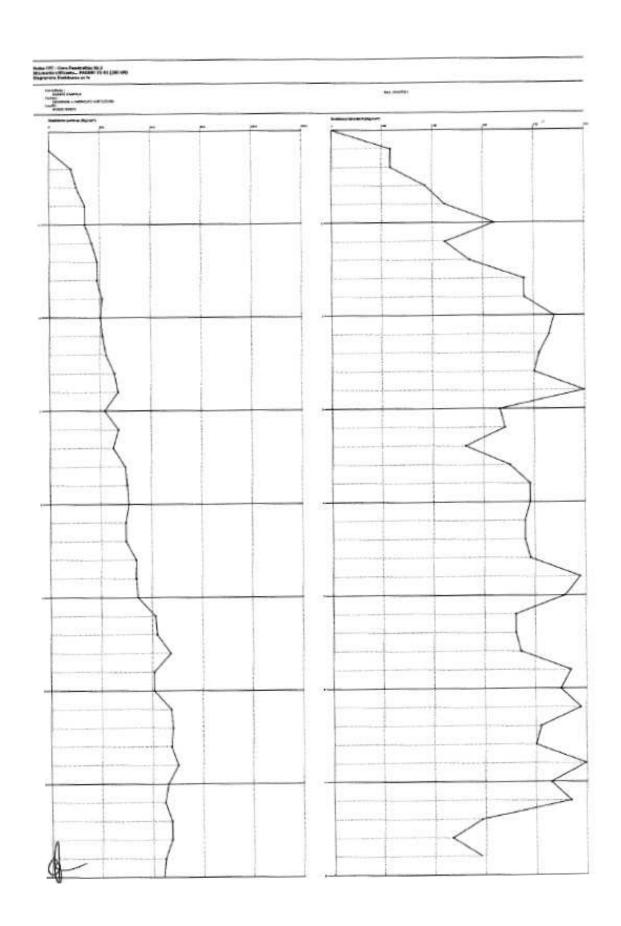


CPT 2

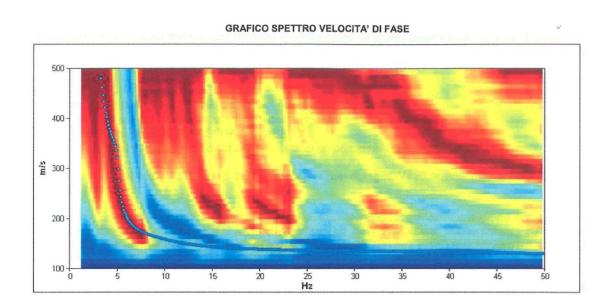
PROVA ... Nr.2

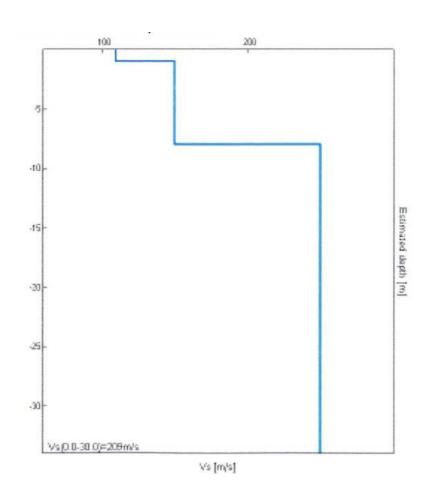
Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 20/04/2010 8.00 mt

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0.20	0.0	0.0	0.1377	0.6669	0.21	484.44
0.40	3,997	14.001	4.138	1.0003	4.14	24.17
0.60	5.996	20.996	6.1377	0.8668	7.08	14.12
0.80	23.005	35,996	23.1384	1.4664	15.78	
1.00	38.005	60.0	38.1384	1.6662	22.89	6.34 4.37
1.20	56.003	80.996	56.2761	2.4004	23.44	4.37
1.40	62.998	99.004	63.2764	2.6666	23.73	4.21
1.60	70,004	109,997	70.2758	3.3997	20.67	4.84
1,80	76,999	128.005	77.2761	4.0003	19.32	5.18
2.00	70.004	130.004	70,2758	3.5333	19.89	5.03
2.20	79,997	133.002	80.4138	3.6669	21.93	4.56
2,40	79.997	135.0	80.4138	4.0003	20.1	4.97
2.60	88.002	148.002	88.4145	4.0003	22.1	4.52
2.80	89.001	149.001	89.4138	3.7332	23.95	4.18
3.00	89.001	145.004	89.4138	3.467	25.79	3.88
3.20	88.002	139,997	88.5522	3.8668	22.9	4.37
3.40	102.002	160.004	102.5518	4.4001	23.31	4.29
3.60	100.004	166.0	100.5522	4,4664	22.51	4.44
3.80	94.997	162.002	95.5525	4.6662	20.48	4.88
4.00	90.0	160.004	90.5518	4.2665	21.22	4.71
4.20	106.999	170.996	107.6902	4.6662	23.08	4.33
4.40	107.998	178.002	108.6895	4.0666	26.73	3.74
4.60	109.997	170.996	110.6902	4.6662	23.72	4.22
4.80	119.001	189,004	119.6902	5,533	21.63	4.62
5.00	121.999	205.004	122.6902	5.6003	21.91	4.56
5.20	118.002	201.996	118.8275	6.1336	19.37	5.16
5.40	109.997	201.996	110.8279	6,1999	17.88	5.59
5.60	116.003	209.001	116.8279	0.6669	175.18	0.57
5.80	104.001	114.004	104.8278	6.0663	17.28	5.79
6.00	103.002	194.001	103.8275	5.8664	17.7	5.65
6.20	105,999	194.001	106.9662	5.8001	18.44	5.42
6.40	111.995	198,998	112.9662	5.4004	20.92	4.78
6.60	120.0	200.996	120.9659	6,0663	19.94	5.01
6.80	122.998	213.998	123.9659	6.6669	18.59	5.38
7.00	121.0	221.003	121.9662	6.7332	18.11	5.52
7 7.20	121.999	223,002	123.1042	5,6666	21.72	4.6
7.40	111,995	196,999	113.1039	4.9997	22.62	4.42
7.60	121.0	196.0	122.1039	5.067	24.1	4.15
7.80	119.001	195.0	120.1042	5.6666	21.2	4.72
8.00	130.004	214.997	131.1039	0.0	21.2	0.0



CPT 3


PROVA ... Nr.3


Strumento utilizzato... Prova eseguita in data Profondità prova PAGANI TG 63 (200 kN) 20/04/2010 8.00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)	Begemann	(Schmertmann
0.20	0.0	0.0	0.138	0.8	0.17	579.7
0.40	13.0	25.0	13.138	0.8	16.42	6.0
0.60	16.0	28.0	16.138	1.2667	12.74	7.8
0.80	21.0	40.0	21.138	1.5333	13.79	7.2
1.00	21.0	44.0	21.138	2.2	9.61	10.4
1.20	25.0	58.0	25.276	1.5333	16.48	6.0
1.40	28.0	51.0	28.276	1.8667	15.15	6.
1.60	28.0	56.0	28.276	2.6	10.88	9.
1.80	31.0	70.0	31.276	2.6	12.03	8.3
2.00	30.0	69.0	30.276	3.0	10.09	9.9
2.20	31.0	76.0	31.414	2.9333	10.71	9.3
2.40	33.0	77.0	33.414	2.8	11.93	8.3
2.60	38.0	80.0	38.414	2.7333	14.05	7.1
2.80	40.0	81.0	40.414	3.4	11.89	8.4
3.00	32.0	83.0	32.414	2.2667	14.3	6.9
3,20	40.0	74.0	40.552	2.3333	17.38	5.7
3.40	37.0	72.0	37.552	1.8	20.86	4.7
3.60	44.0	71.0	44.552	2.4	18.56	5.3
3.80	45.0	81.0	45.552	2.6667	17.08	5.8
4.00	46.0	86.0	46.552	2.6667	17,46	5,7
4.20	44.0	84.0	44.69	2.6	17.19	5.8
4.40	44.0	83.0	44.69	2.6	17.19	5.8
4.60	50.0	89.0	50.69	2.6667	19.01	5.2
4.80	50.0	90.0	50.69	3.3333	15.21	6.5
5.00	51.0	101.0	51.69	3.1333	16.5	6.0
5.20	61.0	108.0	61.828	2,4667	25.07	3.9
5.40	62.0	99.0	62.828	2.4667	25,47	3.9
5.60	70.0	107.0	70.828	2.5333	27.96	3.5
5.80	60.0	98.0	60.828	3.2	19.01	5.2
6.00	60.0	108.0	60.828	3.0667	19.84	5.0
6.20	70.0	116.0	70.966	3.3333	21.29	4.
6.40	71.0	121.0	71.966	2.8	25.7	3.8
6.60	70.0	112.0	70.966	2.7333	25.96	3.8
6.80	74.0	115.0	74,966	3,4	22.05	4.5
7.00	68.0	119.0	68,966	2,9333	23.51	4.2
7.20	66.0	110.0	67.104	3.2	20.97	4.7
7.40	70.0	118.0	71.104	2.0	35.55	2.8
7.60	70.0	100.0	71.104	1.6	44,44	2.2
7.80	66.0	90.0	67.104	2.0	33.55	2.9
8.00	65.0	95.0	66.104	0.0	33.33	2.5

MASW

HVSR

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 1.78 ± 0.17 Hz (in the range OB - 640 Hz)

Average H/V Synthetic H/V

Interval 1.78 ± 0.17 Hz (in the range OB - 640 Hz)

Average H/V Synthetic H/V

Interval 1.78 ± 0.17 Hz (in the range OB - 640 Hz)

SINGLE COMPONENT SPECTRA NS component P-W component Up-Down component 10 -4 10 -4 10 -4

Dai grafici sopra riportati, frutto della elaborazione delle tracce con il software Grilla, è emerso un **picco**

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 123 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PODERE LA CASETTA

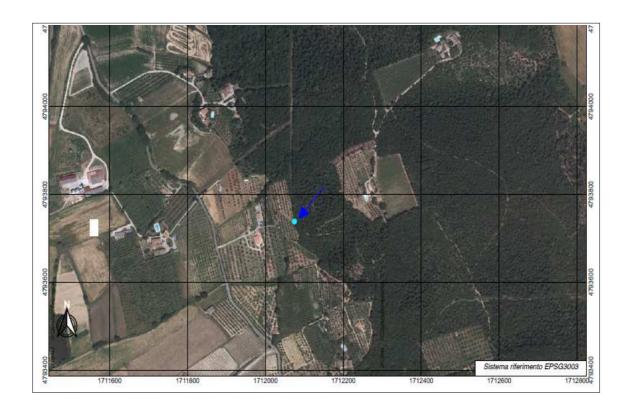
D'ELCI

SERRE DI RAPOLANO

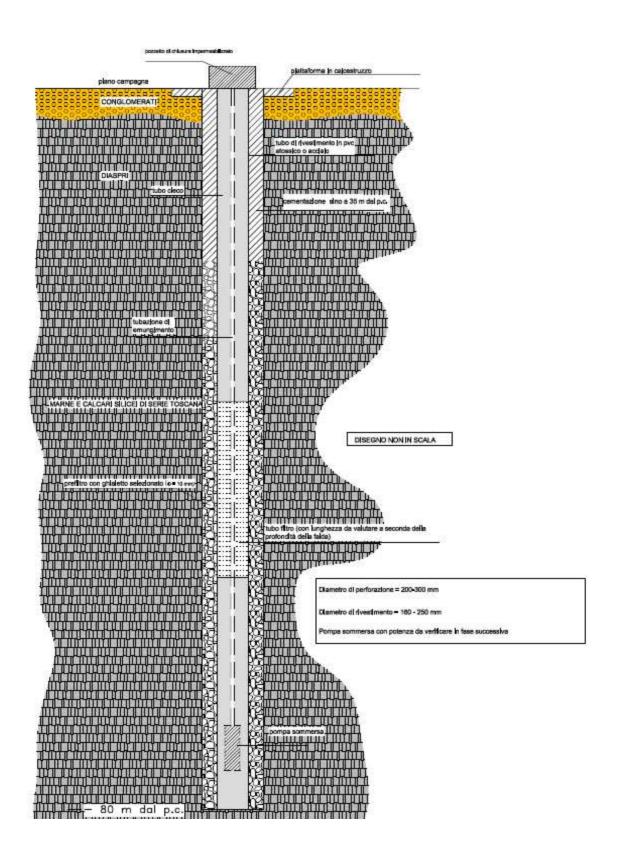
PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA

ACQUA AD USO DOMESTICO


NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO


DATA INDAGINE DICEMBRE 2019

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 124 RT

RIFERIMENTO PRATICA PROTOCOLLO N.12744 DEL

EDILIZIA 31/8/2007

PRATICA N. 6/07

LOCALITÀ LOCALITÀ PERETO

SERRE DI RAPOLANO

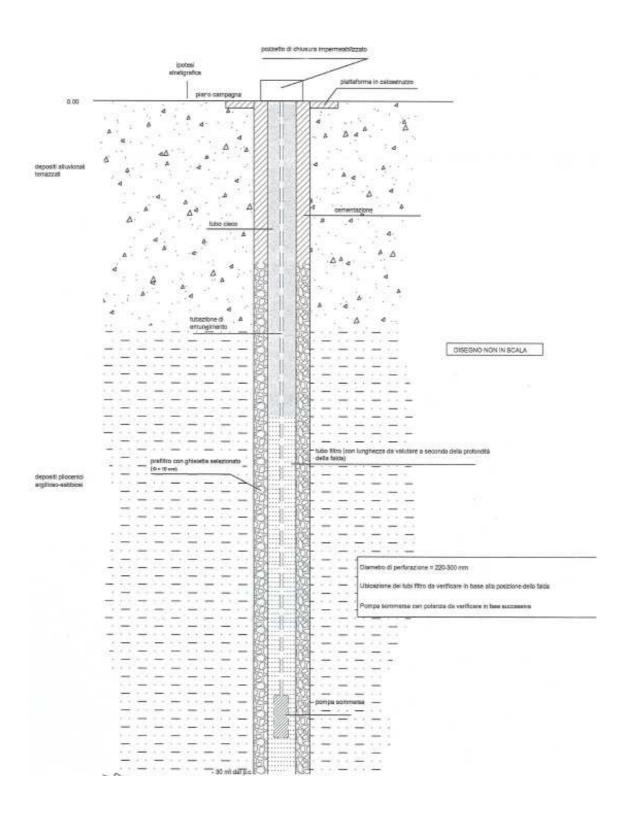
PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA

ACQUA AD USO DOMESTICO

NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO


DATA INDAGINE AGOSTO 2007

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 125 RT

RIFERIMENTO PRATICA PDC 01/2015

EDILIZIA

LOCALITÀ SERRE DI RAPOLANO

PROGETTO SOSTITUZIONE EDILIZIA

> CON DEMOLIZIONE DI UN LOCALE ADIBITO A GARAGE E COSTRUZIONE DI LOCALI STACCATI DAL FABBRICATO

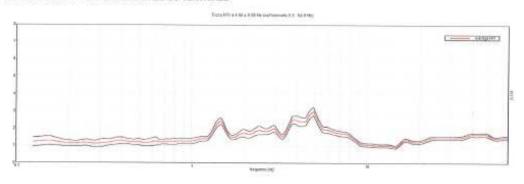
PRINCIPALE E DI UN PORTICO IN ADERENZA

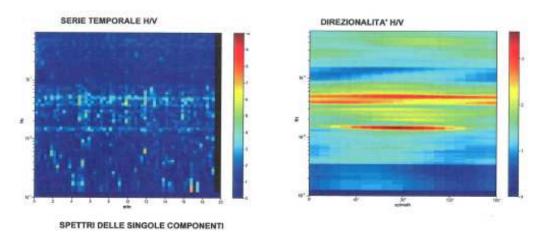
NUMERO E TIPO DI N.2 SAGGI ESPLORATIVI

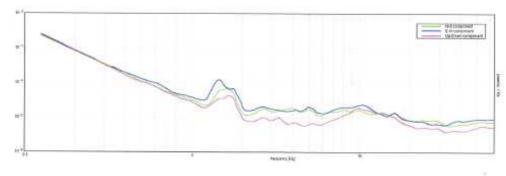
INDAGINE N.1 HVSR

DATA INDAGINE FEBBRAIO 2015

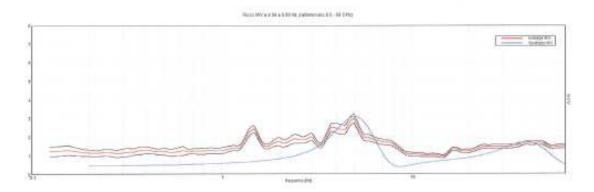
RISULTATI PROVE


FOTO SAGGIO S1 – profondità 1.30 m da p.c.. Argille sabbiose consistenti

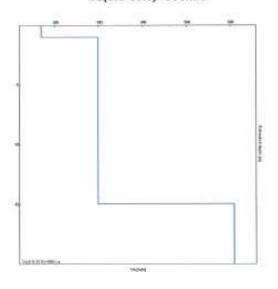



FOTO SAGGIO S2 – profondità 1.00 m da p.c.. Terreno di riporto: limi argillosi mediamente consistenti

HVSR


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

H/V SPERIMENTALE vs. H/V SINTETICO



Profondità alla base dello strato [m] | Spessore [m] | Vs [m/s] | Rapporto di Poisson

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
1.00	1.00	226	0.42
15.00	14.00	425	0.42
>30	>16	881	0.40

È stato quindi possibile stimare, tramite la formula Vs₃₀ = 30/ ∑hi/Vi, , la velocità delle onde Vs nei 30 m dal p.c., come esplicitamente richiesto dalle Norme Tecniche per le Costruzioni del 14 gennaio 2008:

Vs(0.0-30.0)=388m/s

(PROVINCIA DI SIENA)

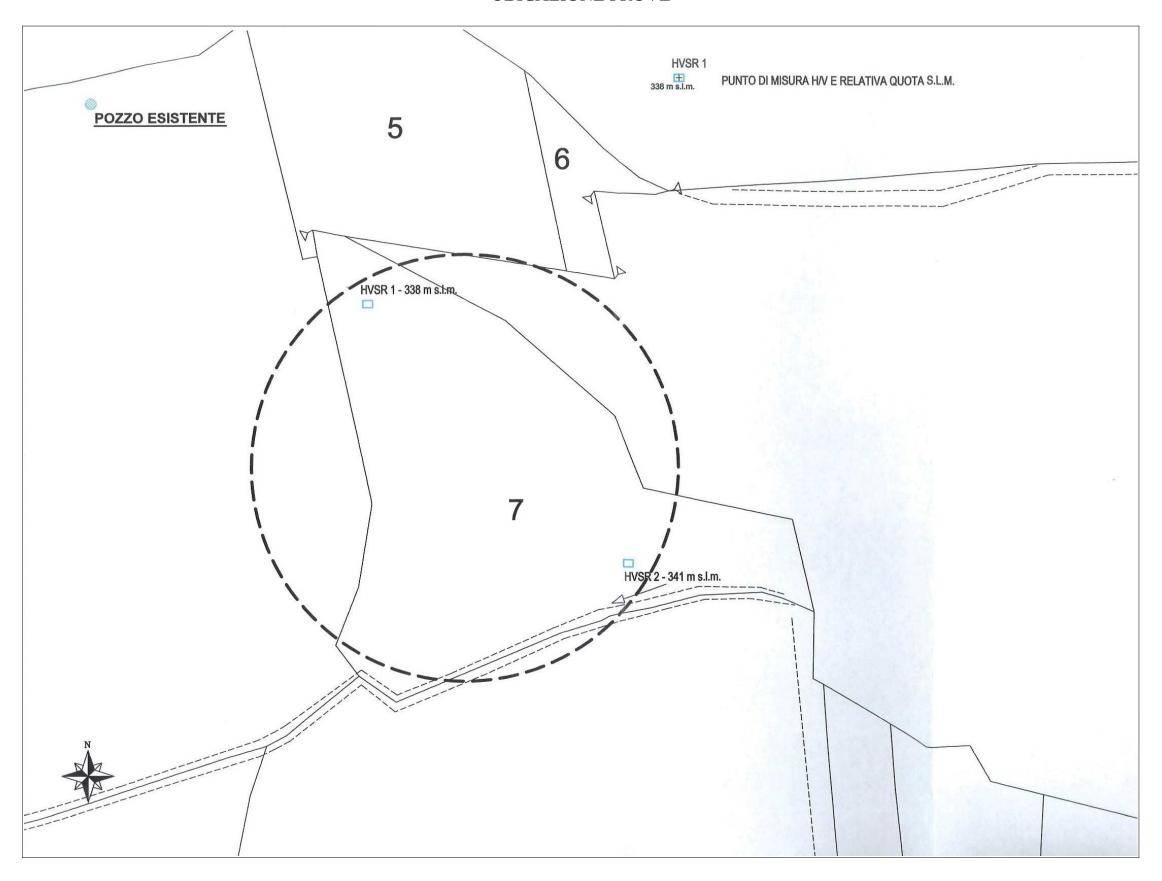
SCHEDA INDAGINE 126 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 4867 DEL

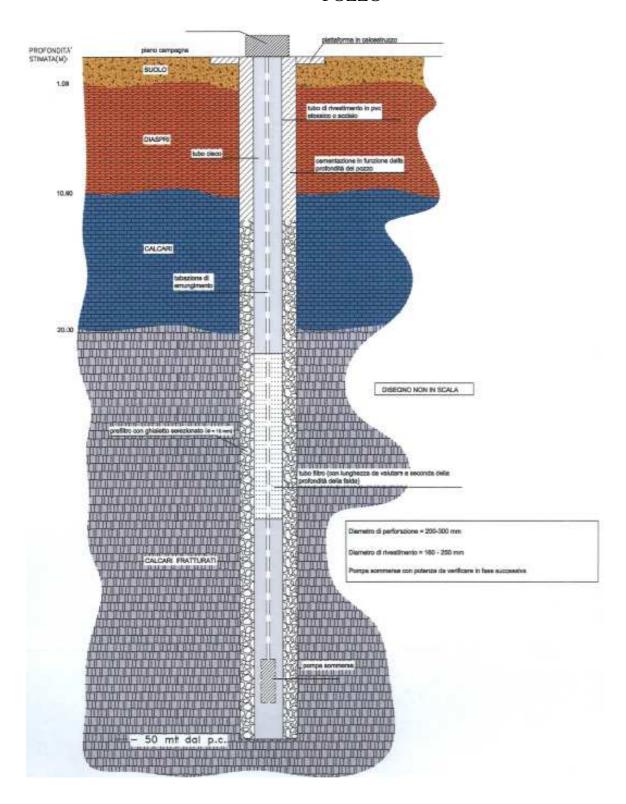
EDILIZIA 02/05/2013

LOCALITÀ SERRE DI RAPOLANO

PROGETTO PERFORAZIONE DI UN


POZZO PER LA RICERCA DI ACQUE DAL SOTTOSUOLO PER USO DOMESTICO

NUMERO E TIPO DI N.1 PERFORAZIONE PER


INDAGINE POZZO

N.2 HVSR

DATA INDAGINE APRILE 2013

RISULTATI PROVE POZZO

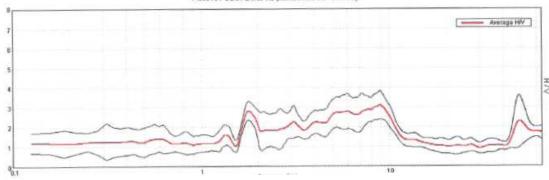
HVSR 1

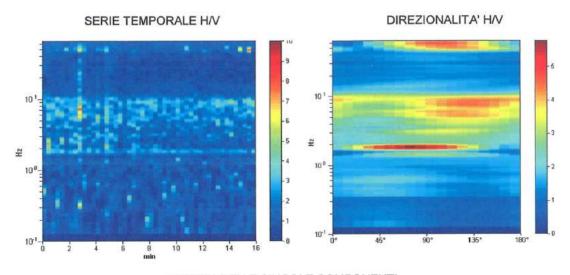
SERRE DI RAPOLANO, POZZO ANGELINI HVSR 1 - QUOTA S.L.M. 336

Strumento: TEP-0046/01-09 Inizio registrazione: 17/04/13 14:45:03 Fine registrazione: 17/04/13 15:01:03

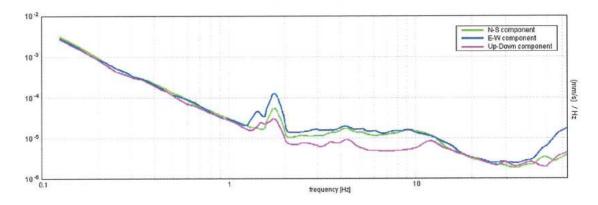
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile


Analisi effettuata sull'intera traccia.


Durata registrazione: 0h16'00". Freq. campionamento: 128 Hz Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window

Lisciamento: 10%


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Picco H/V a 8.91 ± 3.39 Hz (nell'intervalle 0.0 - 64.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

HVSR 2

SERRE DI RAPOLANO, POZZO ANGELINI HVSR 2 - QUOTA S.L.M. 340

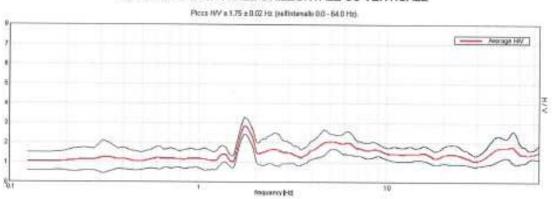
Strumento: TEP-0046/01-09

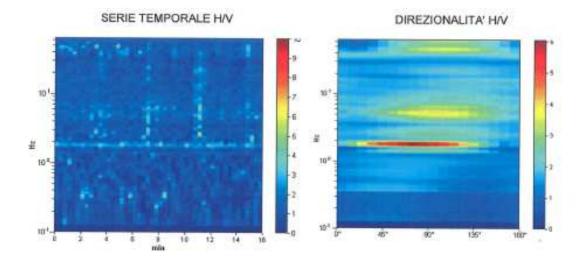
Inizio registrazione: 17/04/13 15:09:47 Fine registrazione: 17/04/13 15:25:47

NORTH SOUTH; EAST WEST; UP DOWN Nomi canali:

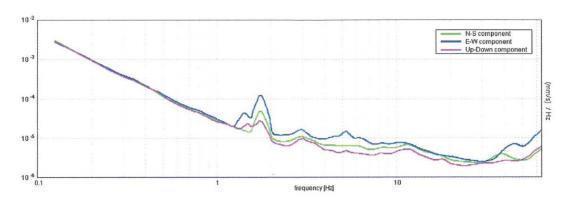
Dato GPS non disponibile

Durata registrazione: 0h16'00".


Analisi effettuata sull'intera traccia.


Freq. campionamento: 128 Hz

Lunghezza finestre: 20 s Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

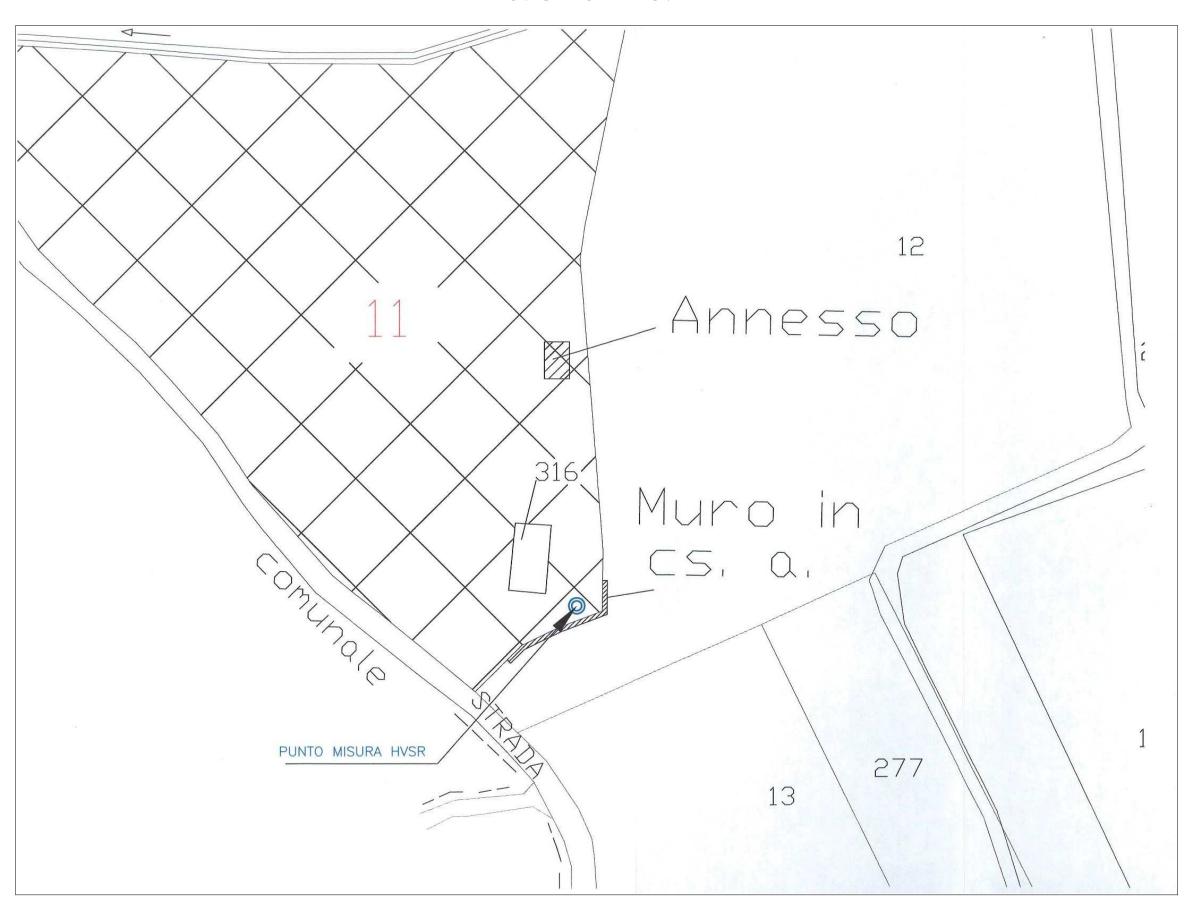
(PROVINCIA DI SIENA)

SCHEDA INDAGINE 127 RT

RIFERIMENTO PRATICA PDC N. 09/2012

EDILIZIA

LOCALITÀ PIEMONTI,


SERRE DI RAPOLANO

MURO A RETTA IN CS PROGETTO

ARMATO

NUMERO E TIPO DI N. 1 HVSR **INDAGINE**

DATA INDAGINE NOVEMBRE 2011

RISULTATI PROVE HVSR

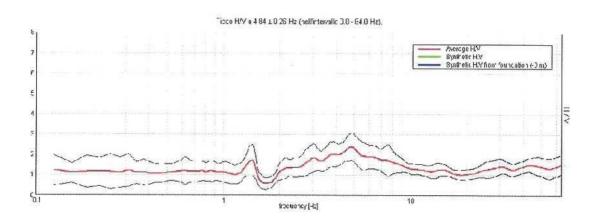
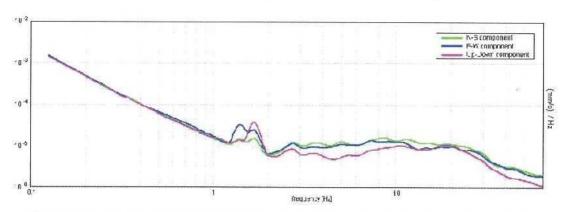
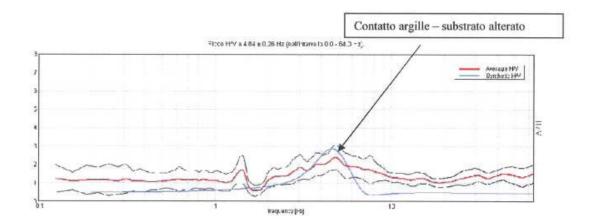




Grafico ampiezza degli spettri sulle tre componenti (orizzontali e verticale)

Il fit della curva H/V viene effettuato tenendo conto dell'assetto stratigrafico noto grazie al pozzo posto poche decine di metri a N dell'area di intervento:

PROFONDITA' (m)	LITOLOGIA
0 – 10	ARGILLE E SABBIE ARGILLOSE
10 – 40	CALCARE SELCIFERO MOLTO FRATTURATO

Spessore simostrati [m]	Profondità dal p.c. [m]	Velocità onde Vs [m/s]	Interpretazione stratigrafica
10	0-10	200	Argille e sabble
30	10 - 40.0	420	Calcare selcifero fratturato

È stato quindi possibile stimare, tramite la sottostante formula, la velocità equivalente delle onde Vs nei primi 30 m dal p.c. (Vs₃₀) come esplicitamente richiesto dalle Norme Tecniche per le Costruzioni del 14 gennaio 2008:

$$\hat{\mathcal{O}}_s = \frac{H}{\sum_{i=1}^n \frac{h_i}{\mathcal{V}_i}} = Vs_{30} = 299 \text{ m/s}$$

Dalla ricostruzione del quadro geofisico emerso dal seguente studio si ritiene opportuno inserire il sito in oggetto di studio nella **Categoria sismica E**: *Terreni di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento*

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 128 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 4555 DEL

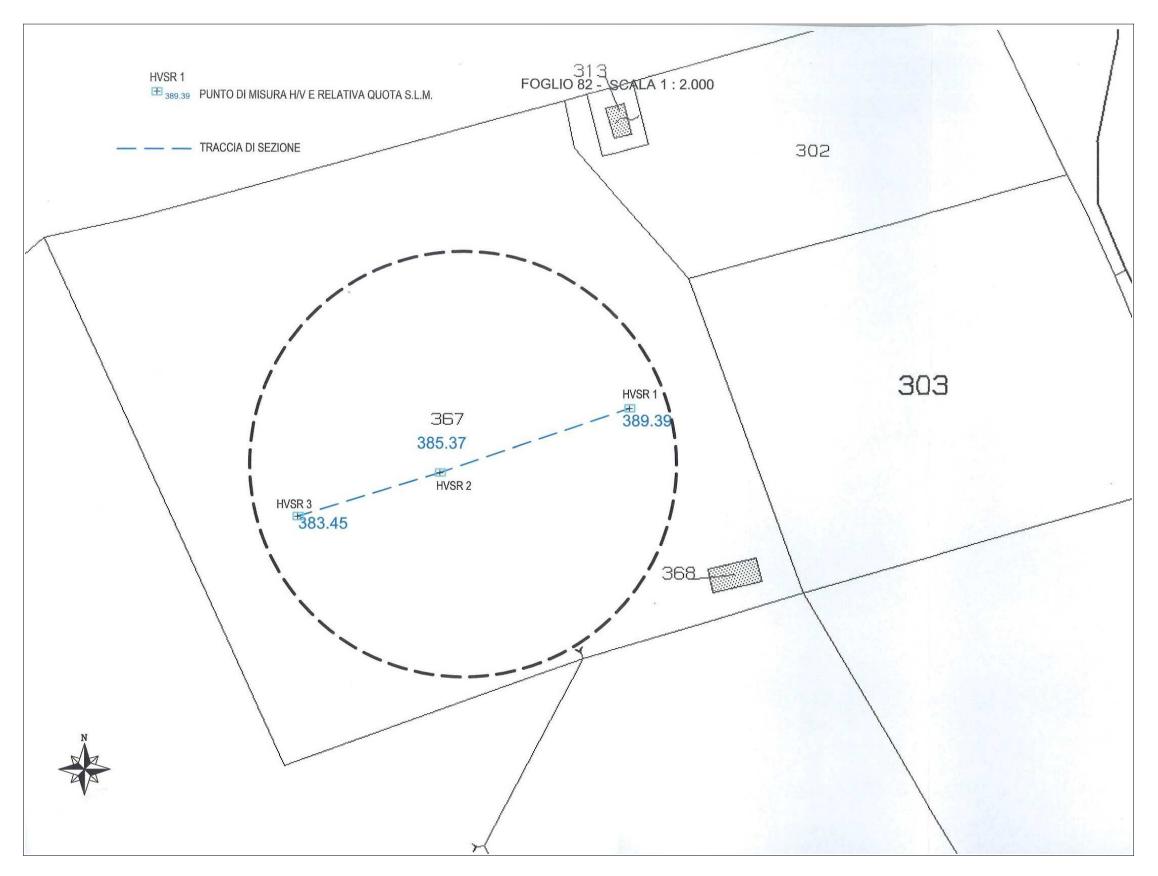
EDILIZIA 13/04/2011

LOCALITÀ PODERE PIEMONTI

SERRE DI RAPOLANO

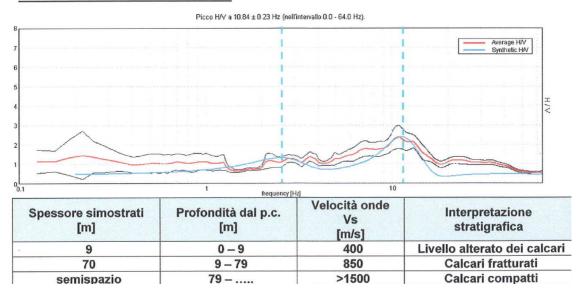
PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA

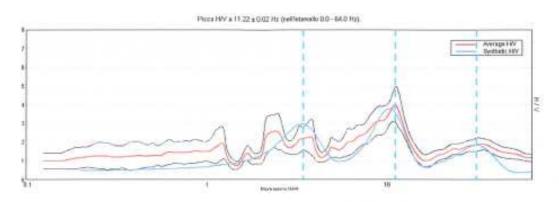

ACQUA PER USO

DOMESTICO

NUMERO E TIPO DI N.3 HVSR

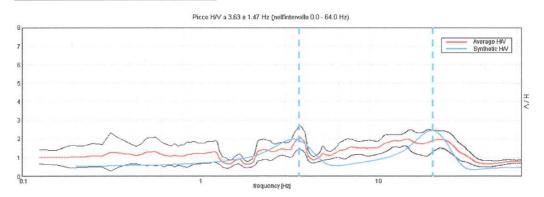

INDAGINE

DATA INDAGINE APRILE 2011


RISULTATI PROVE HVSR 1

MISURA HVSR 1 - QUOTA S.L.M. 389

HVSR 2


MISURA HVSR 2 - QUOTA S.L.M. 385

Spessore simostrati [m]	Profondità dal p.c. [m]	Velocità onde Vs [m/s]	Interpretazione stratigrafica
1.5	0-1.5	200	Suolo
9	1.5 - 10.5	430	Livello alterato dei calcari
55	10.5 - 65.5	850	Calcari fratturati
semispazio	65.5	>1500	Calcari compatti

HVSR 3

MISURA HVSR 3 - QUOTA S.L.M. 383

Spessore simostrati [m]	Profondità dal p.c. [m]	Velocità onde Vs [m/s]	Interpretazione stratigrafica
5	0 – 5	400	Livello alterato dei calcari
58	5 – 63	850	Calcari fratturati
semispazio	63 –	>1500	Calcari compatti

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 129 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PIANO DEL SENTINO

SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

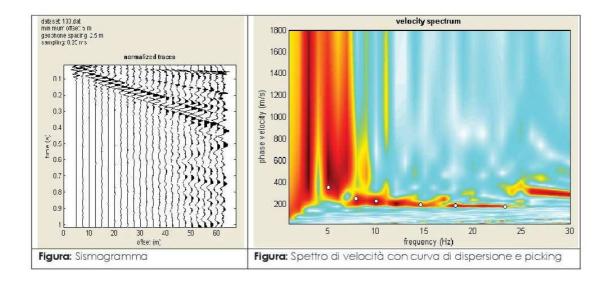
SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

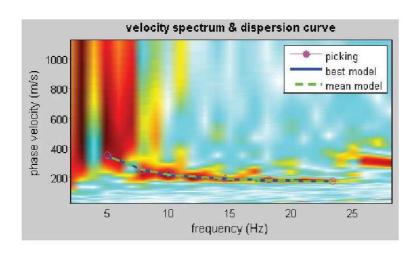
MICROZONAZIONE SISMICA

DI SECONDO LIVELLO

NUMERO E TIPO DI

INDAGINE


N.1 MASW


DATA INDAGINE NOVEMBRE - DICEMBRE

2020

RISULTATI PROVE

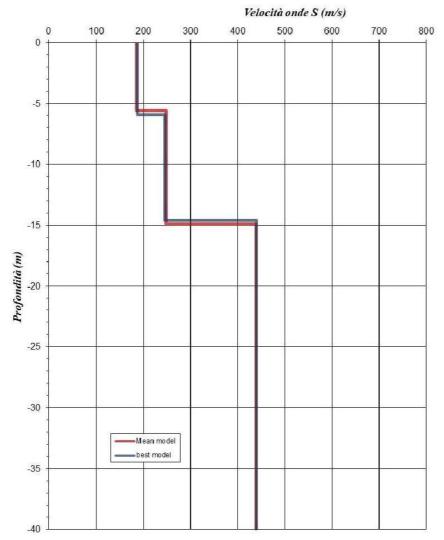


Figura: modello interpretativo

L'interpretazione della prova MASW, relativamente alle onde S, ha reso evidente le seguenti successioni:

		PROVA	MASW		
	Best m	odel		Mean r	nodel
Profondi (n	tà da P.C n)	Velocità Onde S (m/s)		ità da P.C m)	Velocità Onde S (m/s)
0	5,9	188	0	5,6	186
5,9	14,6	245	5,6	14,9	248
14,6	40	439	14,9	40	438
	Vseq = 29	94 m/s		Vseq = 2	94 m/s

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 130 RT

RIFERIMENTO PRATICA

EDILIZIA

PROTOCOLLO N. 164379

LOCALITÀ

PIANO DEL SENTINO SERRE DI RAPOLANO

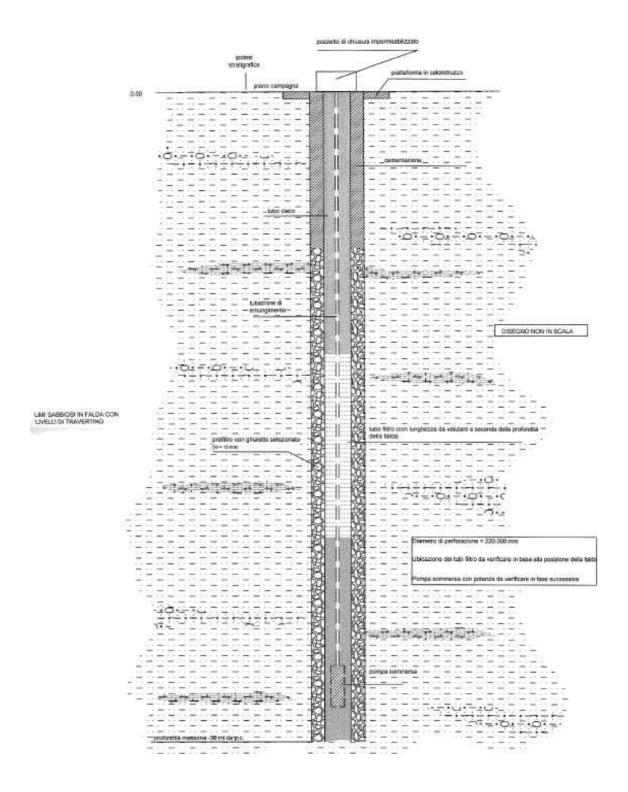
PROGETTO

PERFORAZIONE DI UN POZZO PER RICERCA

ACQUA PER USO

DOMESTICO

INDAGINE


NUMERO E TIPO DI N.1 PERFORAZIONE PER

POZZO

DATA INDAGINE LUGLIO 2012

RISULTATI PROVE

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 131 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PIANO DEL SENTINO

SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

DI SECONDO LIVELLO

NUMERO E TIPO DI

INDAGINE

N.1 ESAC

DATA INDAGINE NOVEMBRE - DICEMBRE

2020

RISULTATI PROVE

ESAC N

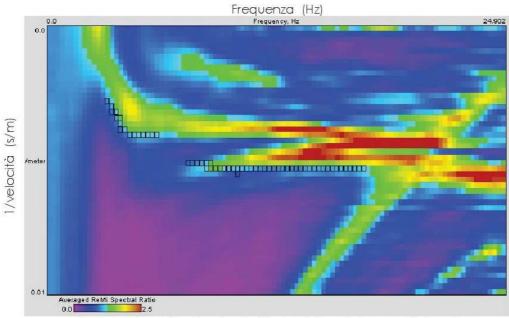


Figura: grafico p-f spettro di velocità con picking della curva di dispersione

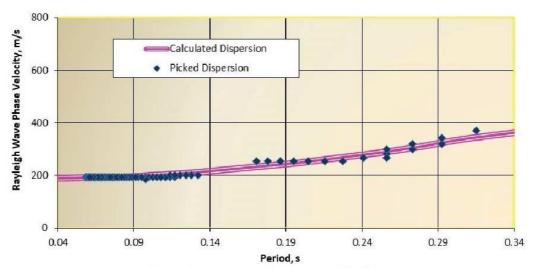


Figura: Diagramma periodo – velocità di fase

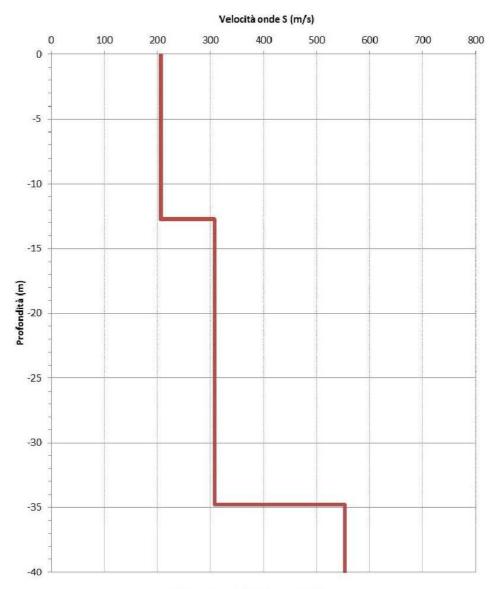


Figura: modello interpretativo

Profondità da P.C (m)		Velocità Onde S (m/s)
0	12,7	207
12,7	34,8	307
34,8	40	554

Per questo terreno il valore di Vseq (calcolato da p.c.) risulta pari a 256 m/s.

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 132 RT

5RIFERIMENTO PRATICA PMAA N. 24 DEL 2011

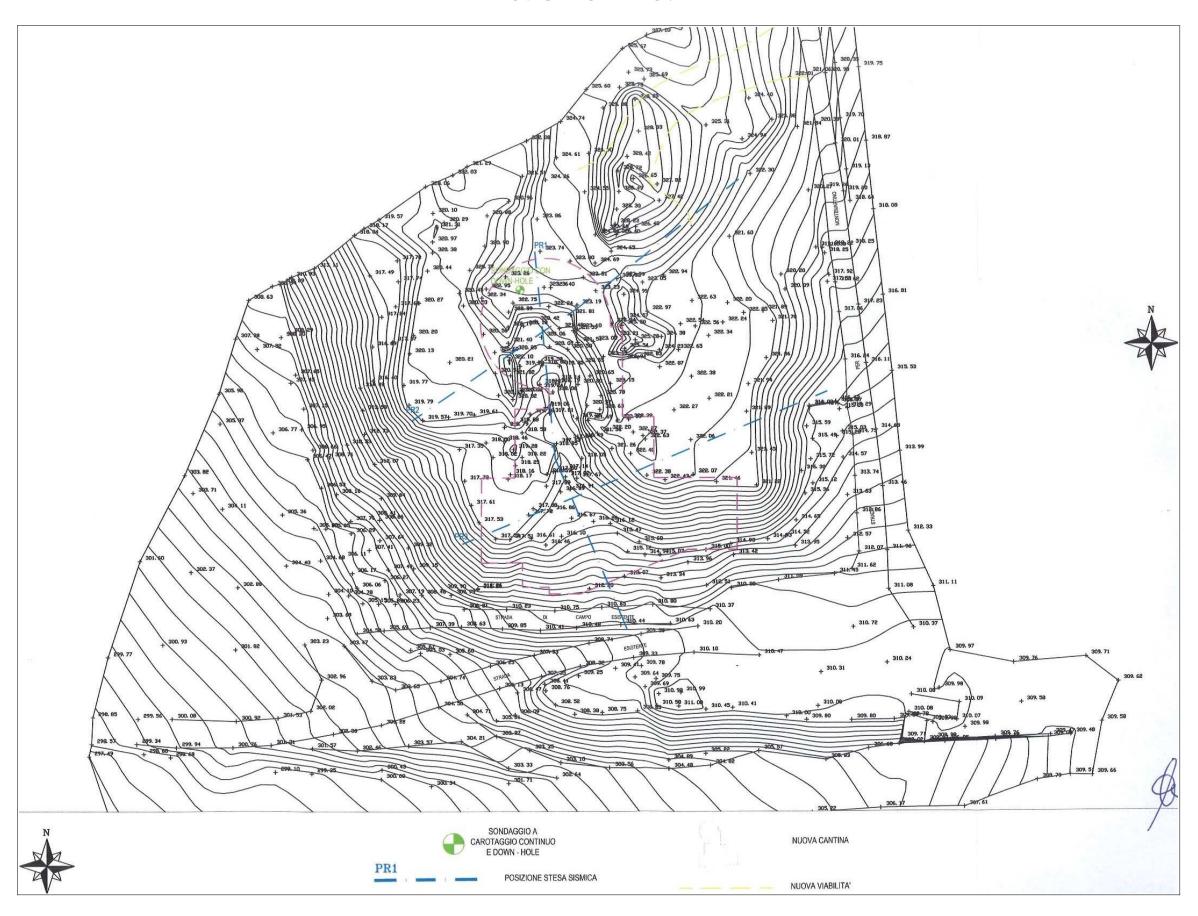
EDILIZIA

LOCALITÀ MOLINO DI MONTE

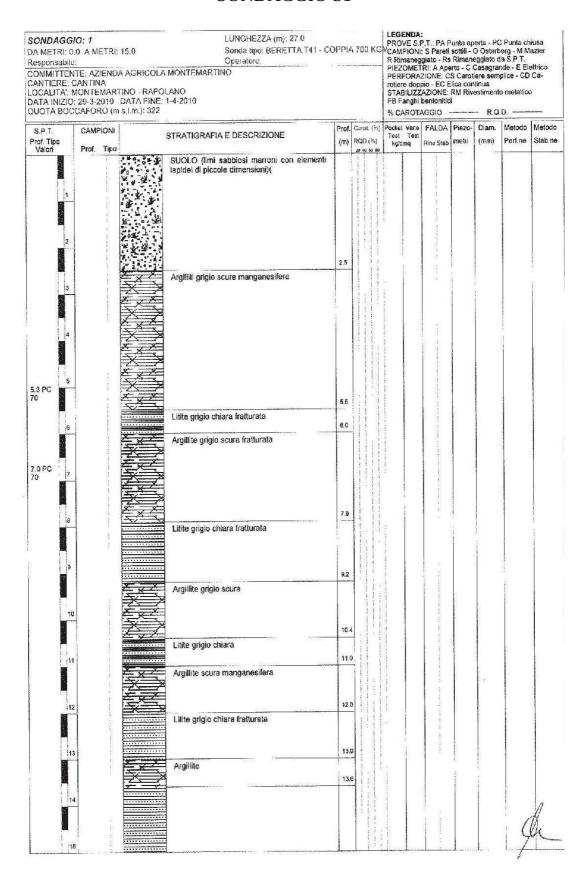
MARTINO,

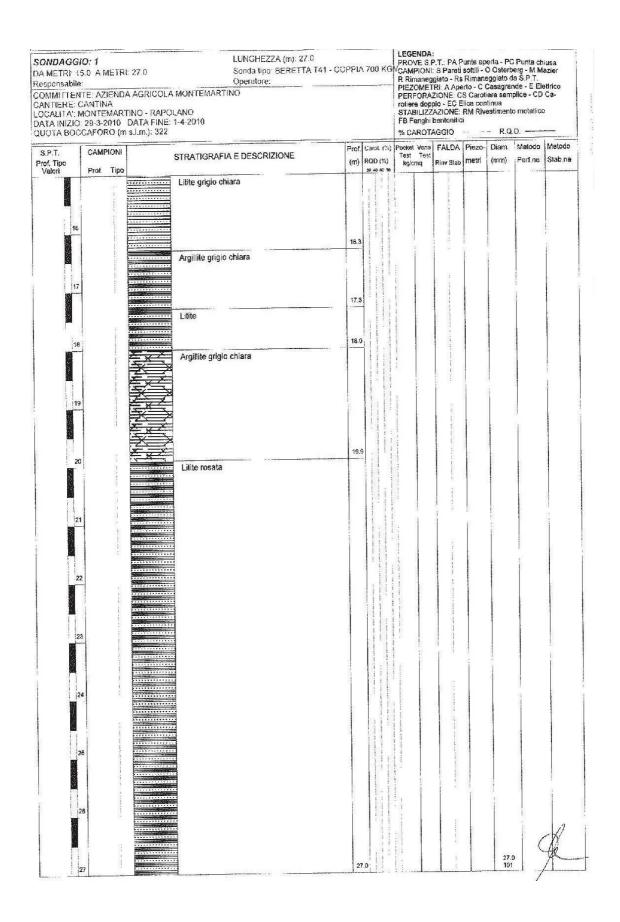
SERRE DI RAPOLANO

PROGETTO PIANO DI MIGLIORAMENTO

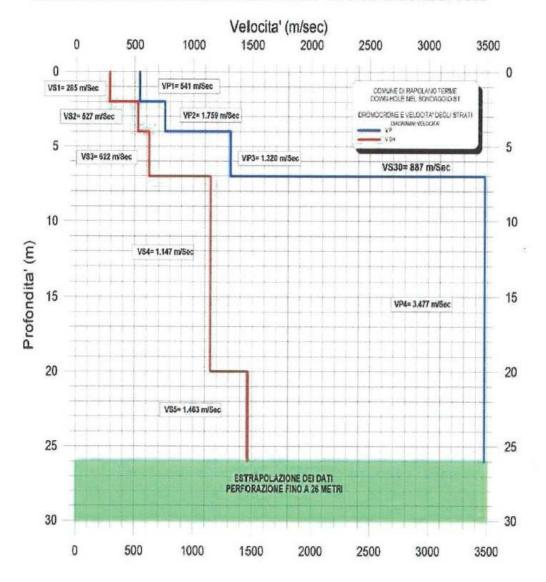

AGRICOLO AMBIENTALE

NUMERO E TIPO DI N. 1 SONDAGGIO A


INDAGINE CAROTAGGIO CONTINUO


N. 1 DOWN HOLE

DATA INDAGINE MARZO 2010


RISULTATI PROVE SONDAGGIO S1

DOWN-HOLE

DIAGRAMMA DELLE VELOCITÀ DELLE ONDE P ED SH E VALORE DI VS30

<u>"PRIMO SISMOSTRATO</u> – suolo, copertura allentata ed eventuali riporti antropici, caratterizzati da velocità sismiche SH di circa 350 m/sec. Lo spessore di tale strato risulta abbastanza costante su tutti gli stendi menti, variando da 1 a 3 mt.

<u>SISMOSTRATO INTERMEDIO</u> – orizzonte alterato della Formazione delle Lititi di Montemartino con velocità delle onde SH sino a 700-800 m/sec. Lo spessore varia dai 3 agli 8 mt

<u>SUBSTRATO SISMICO</u> – E' stato considerato substrato sismico il terreno caratterizzato da velocità delle onde di taglio superiore a 800 m/sec e costituito dalle litologie sempre appartenenti alla Formazione delle lititi di Montemartino. Il tetto di questo livello risulta posto a profondità variabili da 4 a 10 mt dal p.c.c.

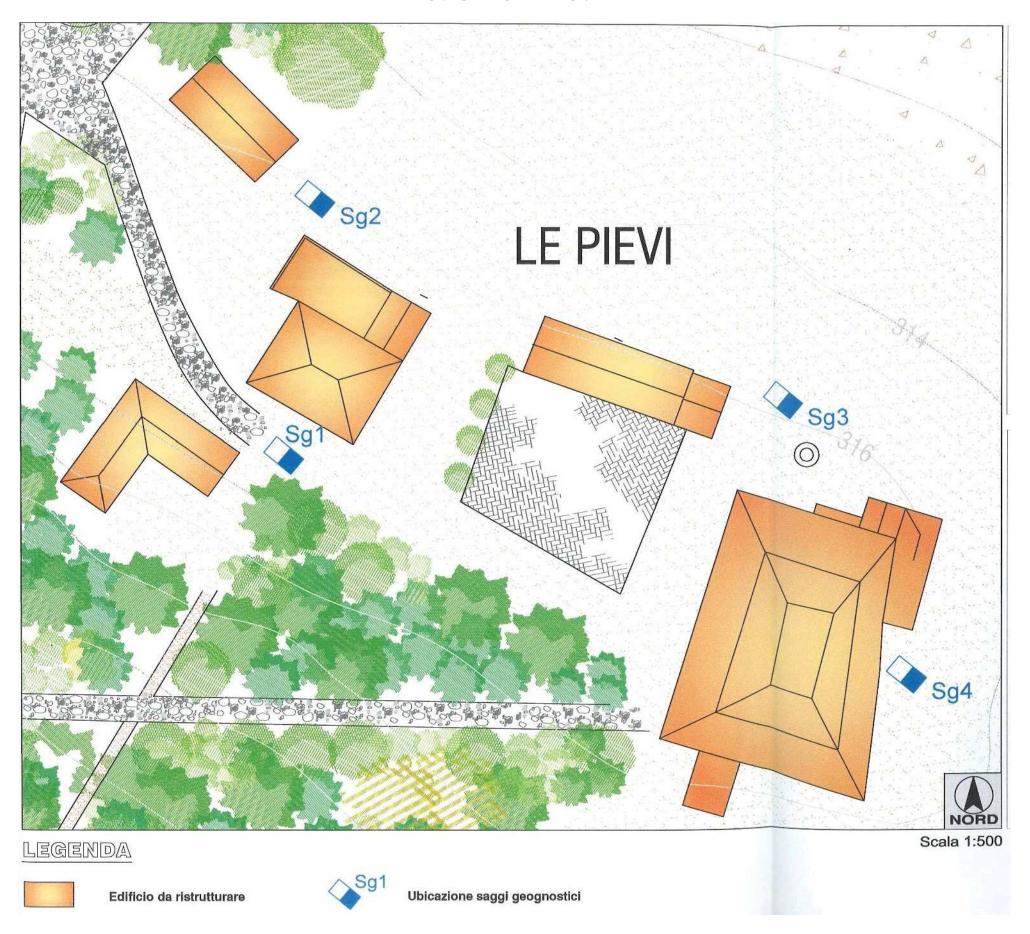
(PROVINCIA DI SIENA)

SCHEDA INDAGINE 133 RT

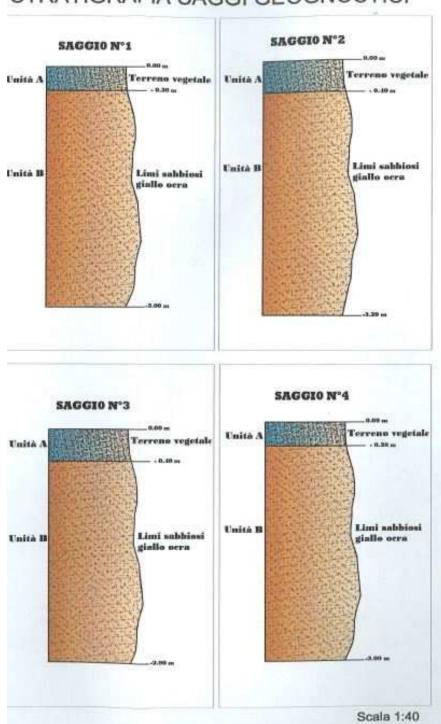
RIFERIMENTO PRATICA PDR N. 17 DEL 2007

EDILIZIA

LOCALITÀ PODERE LE PIEVI,


RAPOLANO TERME

PROGETTO RECUPERO DI UN


AGGREGATO DI EDIFICI

NUMERO E TIPO DI N. 4 SAGGI GEOGNOSTICI INDAGINE

DATA INDAGINE -

STRATIGRAFIA SAGGI GEOGNOSTICI

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 134 RT

RIFERIMENTO PRATICA

EDILIZIA

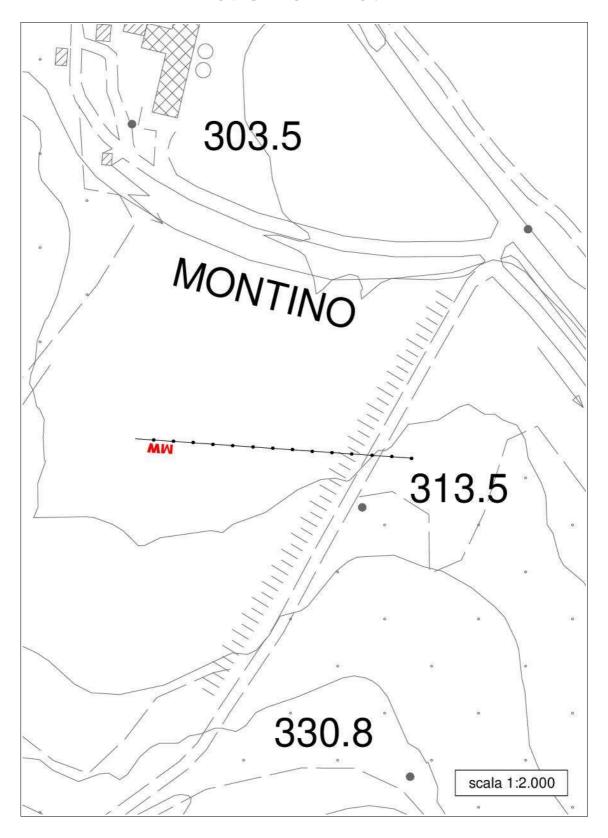
LOCALITÀ SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

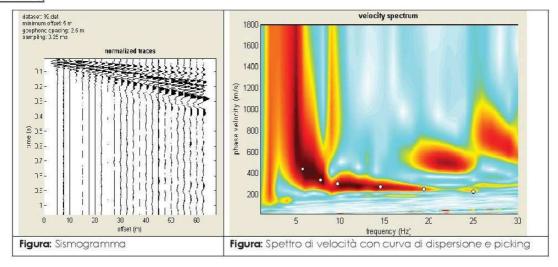
SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

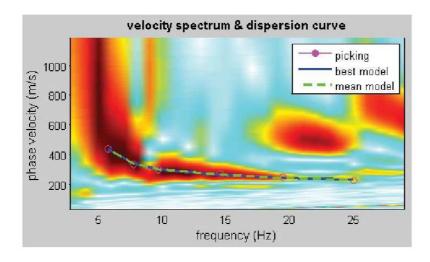
MICROZONAZIONE SISMICA

DI SECONDO LIVELLO


NUMERO E TIPO DI

INDAGINE


N.1 MASW


DATA INDAGINE NOVEMBRE - DICEMBRE

2020

MASW Q

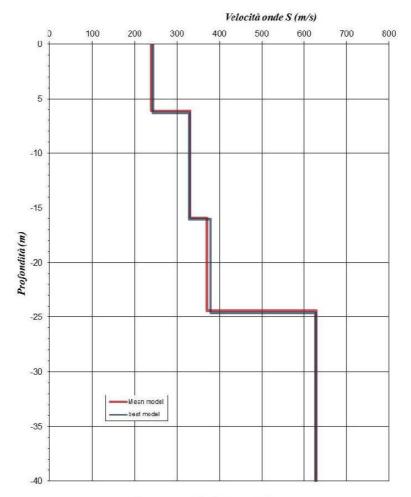


Figura: modello interpretativo

L'interpretazione della prova MASW, relativamente alle onde S, ha reso evidente le seguenti successioni:

		PROVA	MASW		
Best model Mean model					model
Profondi (n	tà da P.C n)	Velocità Onde S (m/s)		ità da P.C m)	Velocità Onde S (m/s)
0	6,3	243	0	6,1	240
6,3	16,1	328	6,1	15,9	331
16,1	24,6	379	15,9	24,4	371
24,6	40	628	24,4	40	628
Vseq = 346 m/s				Vseq = 3	46 m/s

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 135 RT

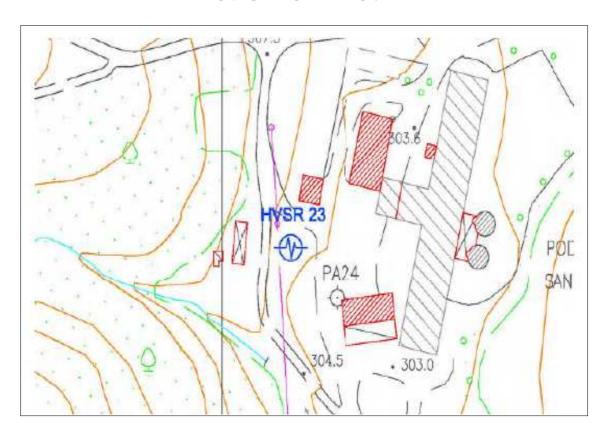
RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PODERE SAN GIUSEPPE,

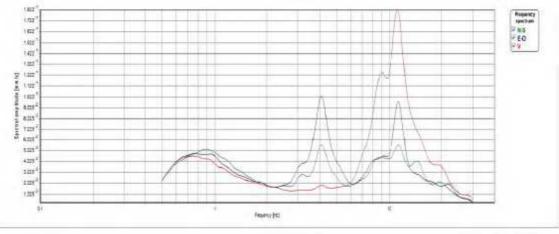
SERRE DI RAPOLANO

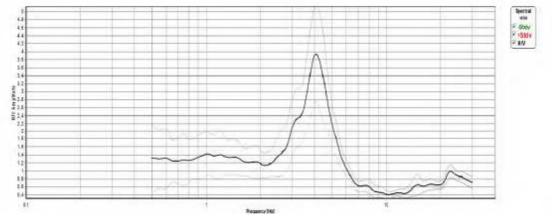
PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR


INDAGINE


DATA INDAGINE AGOSTO 2020

Analysis parameters					
Sample frequency [Hz]:	250.00	Start recordings:	19/08/2020 20:28:27		
Automatic spike removal:	No	Stop recordings:	19/08/2020 21:03:27		
LTA [s]:	5.0	High pass frequency [Hz]:	0.50		
STA [s]:	0.5	Low pass frequency [Hz]:	30.00		
Ratio:	1.9	Nw number of windows:	80		
Lw Windows [s]:	20	Recording length [s]:	2100		
Overlap Windows s]:	0.0	Discarded windows:	25		
Konno-Ohmachi parameter:	40				

Analysis results				
H/V peak frequency fø [Hz]:	4.017	Standard deviation [Hz]:	0.395	



	Criteria for a reliable H/V curve	
fø > 10/Lw	4.02 >= 0.50	Yes
Nc(fø) > 200	6427.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 120</td><td>Yes</td></f<2fø<>	exceeded 0 out of 120	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	1.050	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	5.150	Yes
Aø > 2	3.92 > 2.00	Yes
	Criteria for a stable H/V peak	
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	0.82% < 5.00%	Yes
sf < e(fø)	0.3948 > 0.2008	No
sA(fø) < ?(fø)	1.1802 < 1.5800	Yes

Lw	window length
Nw	number of windows used in the analysis
f	current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/√ curve amplitude at frequency f
Aø	H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
Fpeak[A(f)± sA(f)] = fø ± %	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)						
fø frequency range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø	
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58	

(PROVINCIA DI SIENA)

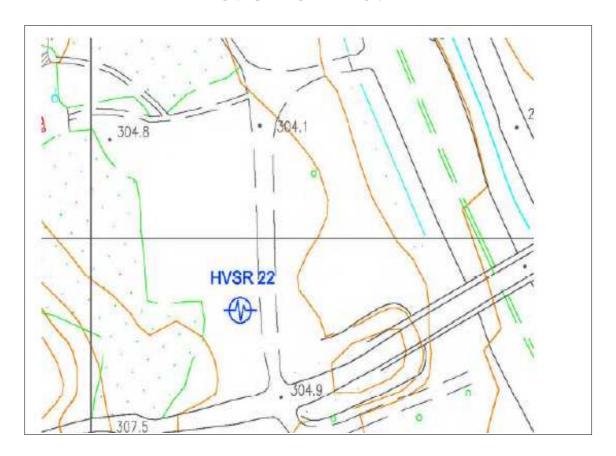
SCHEDA INDAGINE 136 RT

RIFERIMENTO PRATICA EDILIZIA

LOCALITÀ PODERE SAN GIUSEPPE,

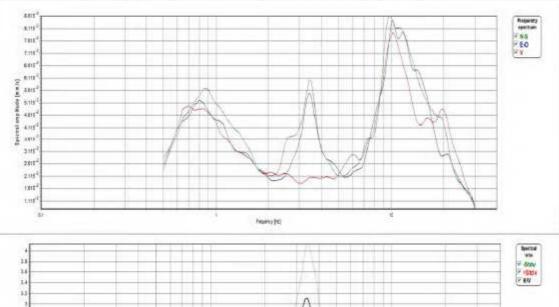
SERRE DI RAPOLANO

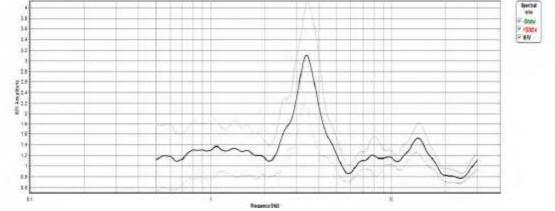
PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

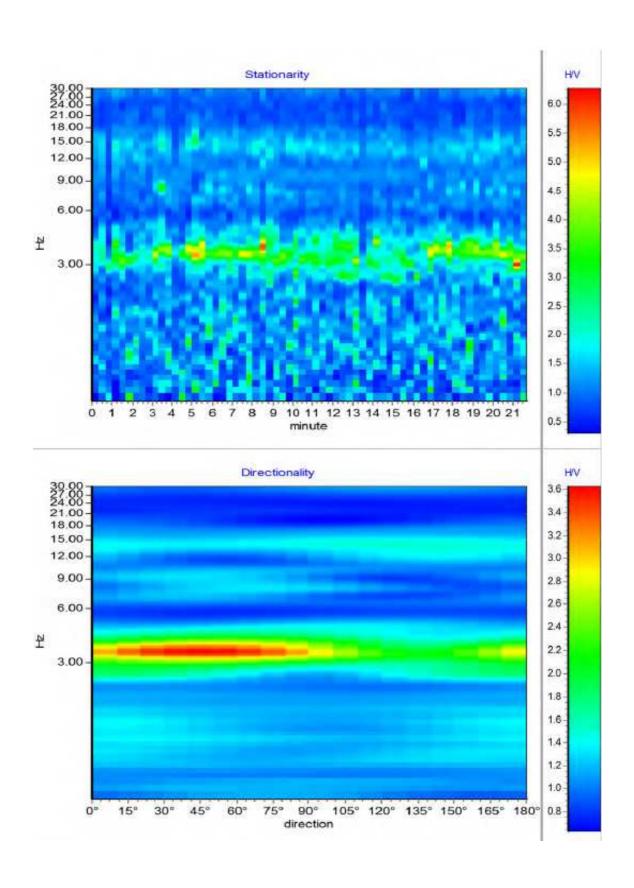
NUMERO E TIPO DI N.1 HVSR


INDAGINE


DATA INDAGINE AGOSTO 2020

Analysis parameters					
Sample frequency [Hz]:	250.00	Start recordings:	19/08/2020 19:49:16		
Automatic spike removal:	No	Stop recordings:	19/08/2020 20:24:16		
LTA[s]:	5.0	High pass frequency [Hz]:	0.50		
STA [s]:	0.5	Low pass frequency [Hz]:	30.00		
Ratio:	1.9	Nw number of windows:	65		
Lw Windows [s]:	20	Recording length [s]:	2100		
Overlap Windows s]:	0.0	Discarded windows:	40		
Konno-Ohmachi parameter:	40	5			

Analysis results					
H/V peak frequency fø [Hz]: 3.342 Standard deviation [Hz]: 0.355					



	Criteria for a reliable H/V curve	
fø > 10/Lw	3.34 >= 0.50	Yes
Nc(fø) > 200	4345.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 100</td><td>Yes</td></f<2fø<>	exceeded 0 out of 100	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.850	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	4.500	Yes
Aø > 2	3.08 > 2.00	Yes
	Criteria for a stable H/V peak	
Fpeak[A(f)± sA(f)] = fø ± %	3.22% < 5.00%	Yes
sf < e(fø)	0.3552 > 0.1671	No
sA(fø) < ?(fø)	0.9263 < 1.5800	Yes

Lw	window length
Nw	number of windows used in the analysis
f	current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/\/(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
$Fpeak[A(f) \pm sA(f)] = f \emptyset \pm \%$	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)						
fø frequency range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø	
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58	

(PROVINCIA DI SIENA)

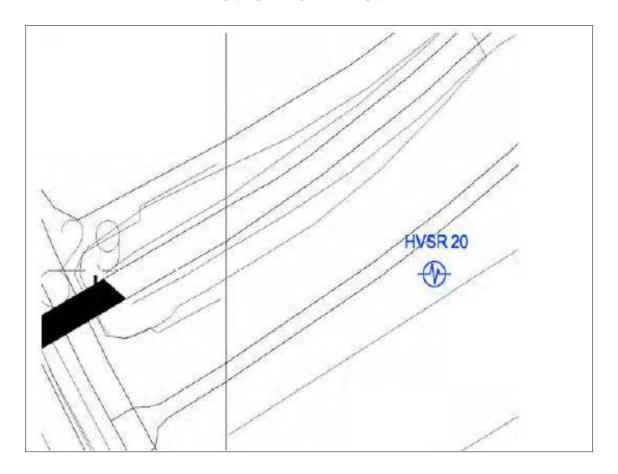
SCHEDA INDAGINE 137 RT

RIFERIMENTO PRATICA EDILIZIA

LOCALITÀ PIANO DEL SENTINO,

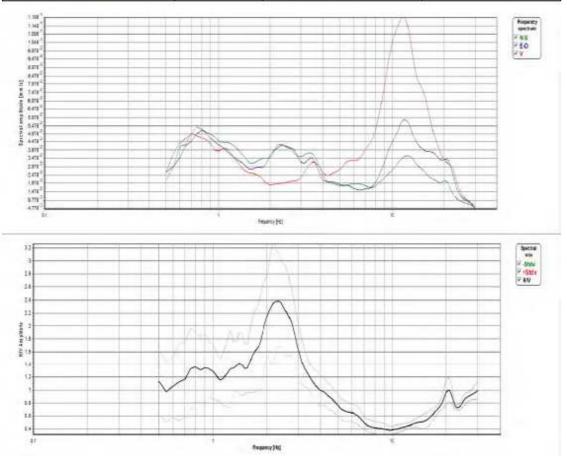
SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

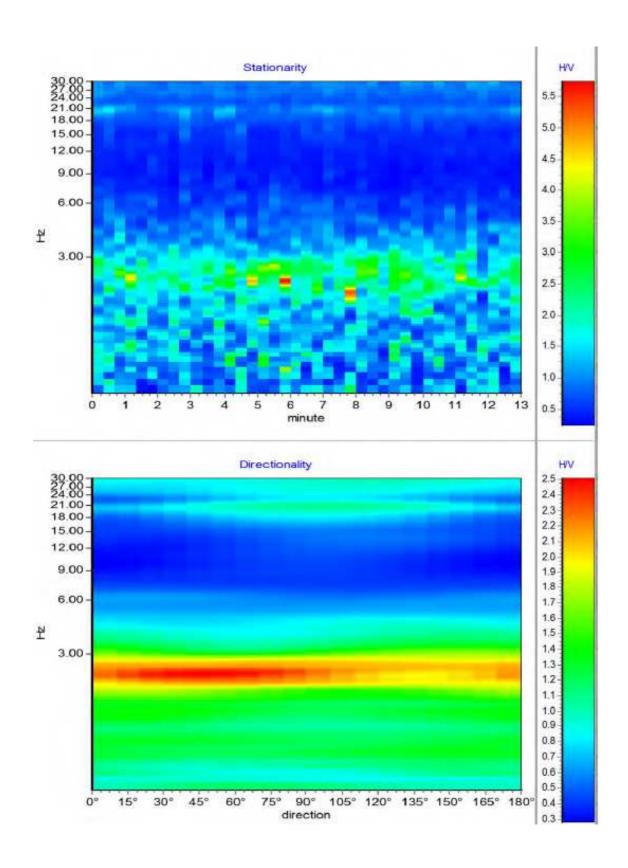
MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR


INDAGINE

DATA INDAGINE AGOSTO 2020

	Analysi	is parameters	440
Sample frequency [Hz]:	250.00	Start recordings:	19/08/2020 18:31:31
Automatic spike removal:	No	Stop recordings:	19/08/2020 19:01:31
LTA [s]:	5.0	High pass frequency [Hz]:	0.50
STA [s]:	0.5	Low pass frequency [Hz]:	30.00
Ratio:	1.9	Nw number of windows:	39
Lw Windows [s]:	20	Recording length [s]:	1800
Overlap Windows s]:	0.0	Discarded windows:	51
Konno-Ohmachi parameter:	40	Ĭ.	


Analysis results						
H/V peak frequency fø [Hz]:	2.312	Standard deviation [Hz]:	0.252			

	Criteria for a reliable H/V curve		
fø > 10/Lw	Yes		
Nc(fø) > 200	1803.00 >= 200.00	Yes	
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 69</td><td colspan="2">Yes</td></f<2fø<>	exceeded 0 out of 69	Yes	
	Criteria for a clear H/V peak		
Exists f in [fø/4,fø] where A(f) < Aø/2	0.600	Yes	
Exists f in [fø,4fø] where A(f) < Aø/2	3.550	Yes	
Aø > 2	2.38 > 2.00	Yes	
	Criteria for a stable H/V peak		
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	4.83% < 5.00%	Yes	
sf < e(fø)	0.2520 > 0.1156	No	
sA(fø) < ?(fø)	0.7497 < 1.5800	Yes	

Lw Nw f	window length number of windows used in the analysis current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)							
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø		
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58		

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 138 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PIANO DEL SENTINO

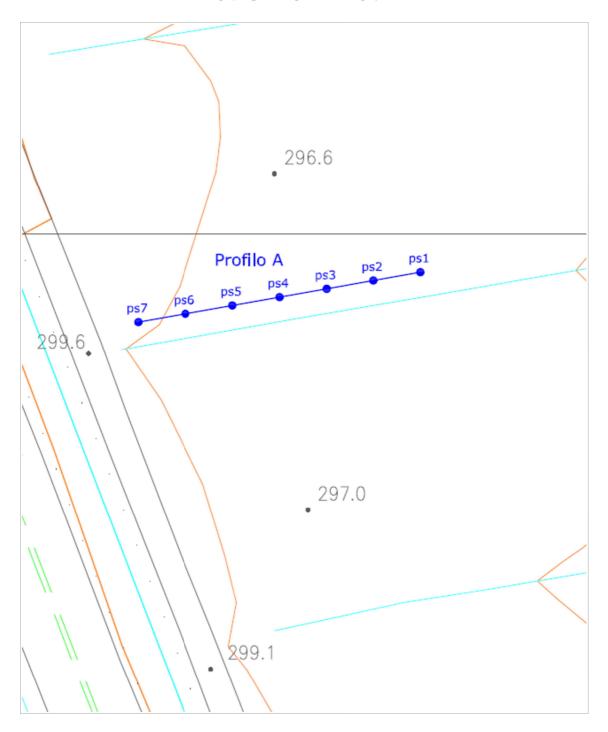
SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

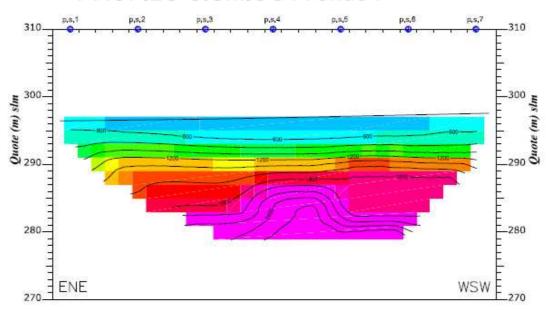
SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

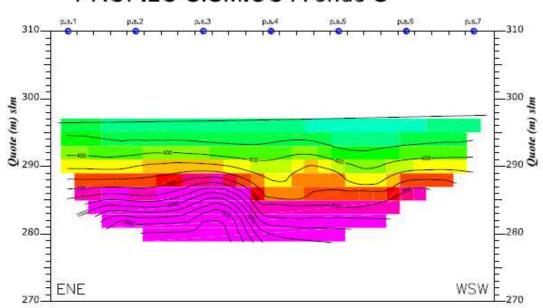
DI SECONDO LIVELLO

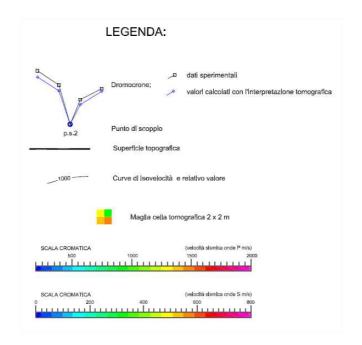

NUMERO E TIPO DI

INDAGINE


N.1 SISMICA A RIFRAZIONE

DATA INDAGINE NOVEMBRE - DICEMBRE


2020



PROFILO SISMICO A onde P

PROFILO SISMICO A onde S

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 139 RT

5RIFERIMENTO PRATICA PI

EDILIZIA

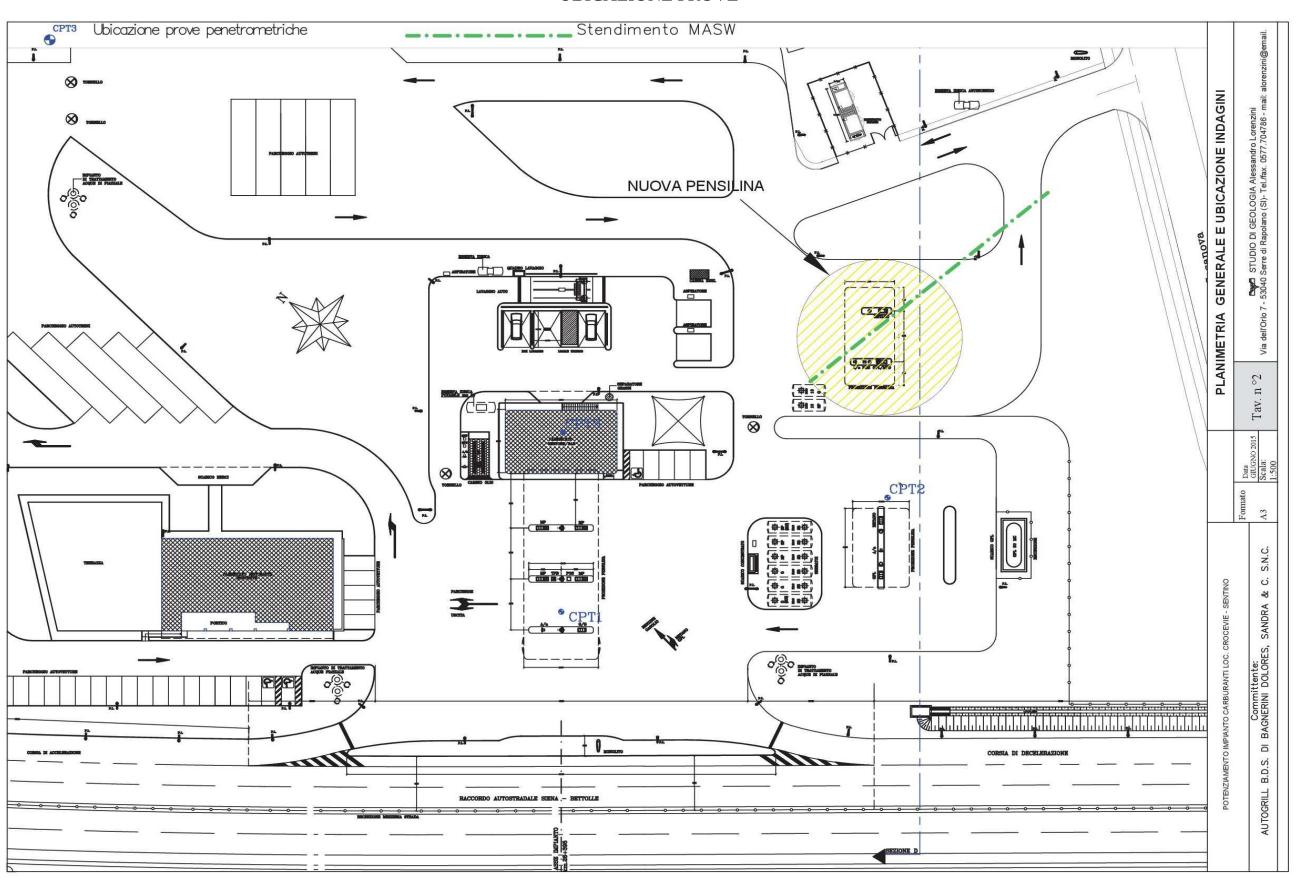
PDC N. 7 DEL 2015

LOCALITÀ SENTINO

SERRE DI RAPOLANO

PROGETTO POTENZIAMENTO DI

IMPIANTO CARBURANTI POSTO LUNGO LA CORSIA


SUD DEL RACCORDO SIENA-BETTOLLE

NUMERO E TIPO DI N. 3 CPT

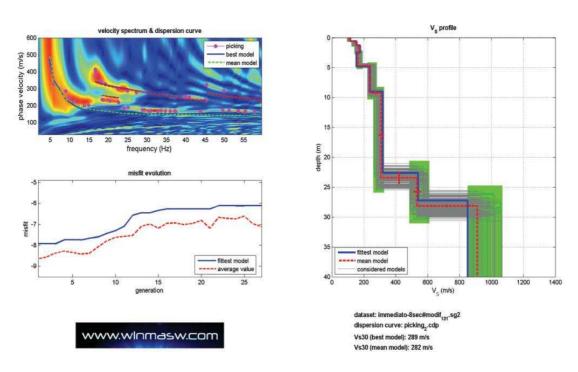
INDAGINE N. 1 MASW

DATA INDAGINE LUGLIO 2000 (CPT)

GIUGNO 2015 (MASW)

			100 100	ROVA ETTUR			A STATE OF STREET			RESIS	TENZA		PT 1
- committente : Studio Geologico Dr. Alessandro Lorenzini - data : 26/07/2000 - lavoro : Ampliamento distributore carburanti AGIP - quota inizio : Piano campagna - prof. falda : Falda non rilevata - note : - pagina : 1													
ď	prf	L	P	LL	Rp	RL	Rp/RI	prf	LP	Ш	Rp	RL	Rp/RI
	m	Kg/cm	1 ²	Kg/cm²	Kg/cm²	Kg/cm ²	537/5	m	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	-
	0,20			af (494)		1,00		3,40	42,0	66,0	42,0	1,33	31,0
	0,40	26,		41,0	26,0	1,93	13,0	3,60	50,0	70,0	50,0	2,07	24,0
	0,60	25,	0	54,0	25,0	1,20	21,0	3,80	51,0	82,0	51,0	2,20	23,0
	0,80	35,		53,0	35,0	2,47	14,0	4,00	42,0	75,0	42,0	2,87	15,0
	1,00	43,		80,0	43,0	3,07	14,0	4,20	43,0	86,0	43,0	2,33	18,0
	1,20	44,		90,0	44,0	3,00	15,0	4,40	35,0	70,0	35,0	1,80	19,0
	1,40	38,		83,0	38,0	2,47	15,0	4,60	34,0	61,0	34,0	1,60	21,0
	1,60	33,		70,0	33,0	1,67	20,0	4,80	43,0	67,0	43,0	2,07	21,0
	1,80	36,		61,0	36,0	1,73	21,0	5,00	58,0	89,0	58,0	2,47	24,0
	2,00	33,		59,0	33,0	1,73	19,0	5,20	64,0	101,0	64,0	3,73	17,0
	2,20	33,		59.0	33,0	1,67	20,0	5,40	47,0	103,0	47,0	5,13	9,0
	2,40	33,		58,0	33,0	1,53	22,0	5,60	52,0	129,0	52,0	1,93	27,0
	2,60	34,		57,0	34,0	1,40	24,0	5,80	40,0	69,0	40,0	1,27	32,0
	2,80	34,		55,0	34,0	1,33	25,0	6,00	34,0	53,0	34,0	2,20	15,0
	3,00	36,		56,0	36,0	1,00	36,0	6,20	25,0	58,0	25,0	5,07	5,0
	3,20	37,	0	52,0	37,0	1,60	23,0	6,40	314,0	390,0	314,0		-

CPT 2


committente : Studio Geologico Dr. Alessandro Lorenzini lavoro : Ampliamento distributore carburanti AGIP località : Serre di Rapolano - Siena note :						III 6		- data : - quota in - prof. falo - pagina :	zio: Pia la: Fal	07/2000 no campa da non rile	
prf	LP	LL	Rp	RL	Rp/RI	prf	LP	L	Rp	RL	Rp/RI
m	Kg/cm²	Kg/cm ²	Kg/cm²	Kg/cm²		m	Kg/cm²	Kg/cm²	Kg/cm²	Kg/cm²	-
0,20	()			0,73		4,20	34,0	59,0	34,0	1,33	25,0
0,40	120,0	131,0	120,0	0.60	200,0	4,40	25,0	45,0	25,0	1,00	25,0
0,60	99,0	108.0	99,0	1,73	57,0	4,60	30,0	45,0	30.0	1,27	24,0
0,80	59,0	85,0	59,0	2,60	23,0	4,80	37,0	56,0	37.0	1,47	25,0
1,00	39,0	78,0	39,0	1,73	22,0	5,00	47,0	69,0	47,0	2,53	19,0
1,20	21,0	47,0	21,0	1,07	20,0	5,20	61,0	99,0	61.0	1,87	33,0
1,40	29,0	45,0	29,0	1,20	24,0	5,40	38,0	66,0	38,0	2,27	17,0
1,60	20,0	38,0	20,0	0,80	25,0	5,60	68,0	102,0	68,0	2,40	28,0
1,80	26,0	38,0	26,0	1,60	16,0	5,80	28,0	64,0	28,0	1,53	18,0
2,00	24,0	48,0	24,0	1,87	13,0	6,00	41.0	64,0	41,0	0,87	47,0
2,20	26,0	54,0	26,0	1,60	16,0	6,20	53,0	66,0	53,0	2,40	22,0
2,40	29,0	53,0	29,0	1,53	19,0	6,40	55,0	91,0	55,0	2,87	19,0
2,60	32,0	55,0	32,0	1,40	23,0	6,60	53,0	96,0	53,0	2,47	21,0
2,80	35,0	56,0	35,0	1,60	22,0	6,80	49,0	86,0	49,0	2,20	22,0
3,00	35,0	59,0	35,0	1,53	23,0	7,00	49.0	82,0	49,0	2,13	23,0
3,20	35,0	58,0	35,0	1,60	22,0	7,20	45,0	77,0	45,0	2,07	22,0
3,40	34,0	58,0	34,0	1,40	24,0	7,40	35,0	66,0	35,0	1,73	20,0
3,60	38,0	59,0	38,0	1,67	23,0	7,60	40,0	66,0	40,0	1,93	21,0
3,80	38,0	63,0	38,0	1,60	24,0	7,80	37,0	66,0	37,0	1,60	23,0
4,00	39,0	63,0	39,0	1,67	23,0	8,00	39,0	63,0	39,0		

SONDAGGI E DATI DI BASE

CPT 3

									7.		NO4964013
committe lavoro : località note :	Am	idio Geolog pliamento rre di Rapo	distributor	e carbura				 data : quota in prof. fale pagina : 	izio: Pia da: Fal	07/2000 no campa da non rile	
p rf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm²	Kg/cm ²	Kg/cm ²	Kg/cm²	•	m	Kg/cm²	Kg/cm²	Kg/cm ²	Kg/cm ²	
0,20				2,13		4,20	47.0	72,0	47.0	2,07	23,0
0,40	78,0	110,0	78,0	1,40	56,0	4,40	47.0	78,0	47,0	2,40	20,0
0,60	92,0	113,0	92,0	0,27	345,0	4,60	46.0	82,0	46,0	2,07	22,0
0,80	196,0	200,0	196,0	5,33	37,0	4,80	46,0	77,0	46,0	2,00	23,0
1,00	26,0	106,0	26,0	1,80	14,0	5,00	44,0	74,0	44,0	1,60	27,0
1,20	20,0	47,0	20,0	1,33	15,0	5,20	44,0	68,0	44,0	2,33	19,0
1,40	21,0	41,0	21,0	1,47	14,0	5,40	41,0	76,0	41,0	2,13	19,0
1,60	20,0	42,0	20,0	1,40	14,0	5,60	40,0	72,0	40,0	1,80	22,0
1,80	26,0	47,0	26,0	1,73	15,0	5,80	40,0	67,0	40,0	2,00	20,0
2,00	32,0	58,0	32,0	1,87	17,0	6,00	41,0	71,0	41,0	1,87	22,0
2,20	31,0	59,0	31,0	1,73	18,0	6,20	42,0	70,0	42,0	2,27	19,0
2,40	36,0	62,0	36,0	2,00	18,0	6,40	39,0	73,0	39,0	1,93	20,0
2,60	37,0	67,0	37,0	1,73	21,0	6,60	47,0	76,0	47,0	1,93	24,0
2,80	38,0	64,0	38,0	2,07	18,0	6,80	49,0	78,0	49,0	2,27	22,0
3,00	39,0	70,0	39,0	2,07	19,0	7,00	49,0	83,0	49,0	2,47	20,0
3,20	39,0	70,0	39,0	2,07	19,0	7,20	52,0	89,0	52,0	2,07	25,0
3,40	43,0	74,0	43,0	1,73	25,0	7,40	45,0	76,0	45,0	1,47	31,0
3,60	49,0	75,0	49,0	2,07	24,0	7,60	49,0	71,0	49,0	1,20	41,0
3,80	40,0	71,0	40,0	1,67	24,0	7,80	31,0	49,0	31,0	0,93	33,0
4,00	45,0	70,0	45,0	1,67	27,0	8,00	64,0	78,0	64,0	-	

MASW

Mean model

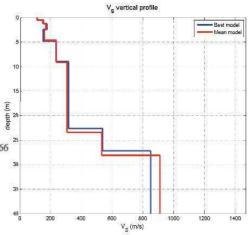
Vs (m/s): 113, 151, 171, 162, 239, 308, 534, 912, 1121

Standard deviations (m/s): 5, 5, 7, 6, 8, 17, 25, 52, 85

Thickness (m): 0.6, 0.7, 1.1, 2.3, 4.6, 14.2, 4.7, 33.9

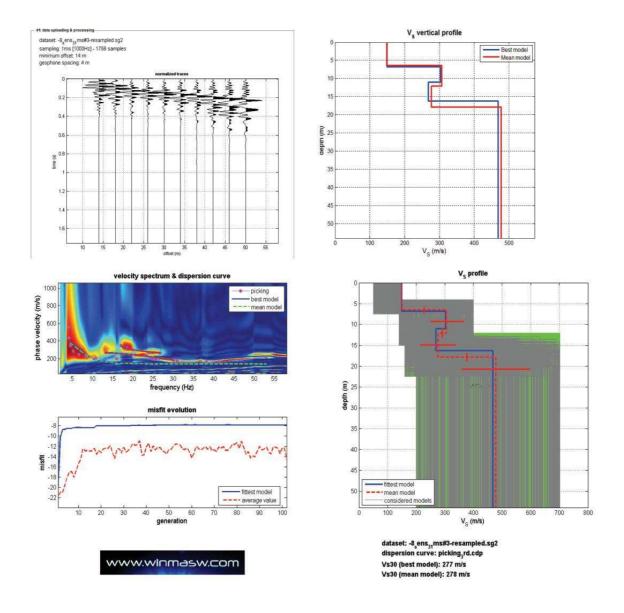
Standard deviations (m/s): 0.0, 0.0, 0.1, 0.1, 0.2, 1.0, 0.2, 2.1

Density (gr/cm3) (approximate values): 1.82 1.89 1.80 1.80 1.87 1.93 2.09 2.17 2.20


Seismic/Dynamic Shear modulus (MPa) (approximate values): 23 43 53 47 107 183 597 1806 2766

Estimated static shear modulus (MPa) (approximate values): 0 0 0 0 0 0 0 0 0

Analyzing Phase velocities


Considered dispersion curve: picking_2.cdp

Analysis: Rayleigh Waves

Secondo questo modello, la velocità sismica media nei primi 30 m di profondità è: Vs30=282 m/s il che porta ad una classificazione del suolo come: CATEGORIA C.

INDAGINE N. 139 RT

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 140 RT

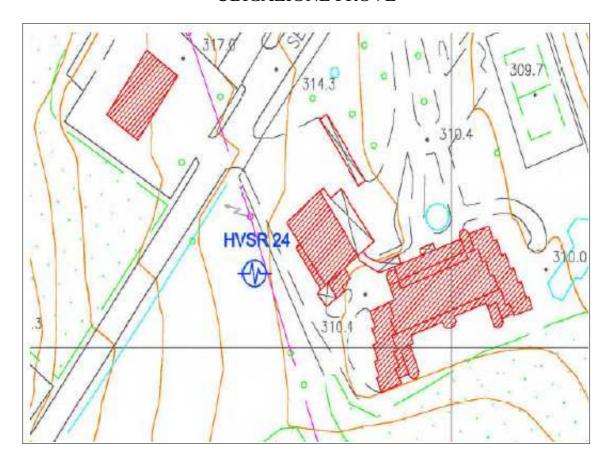
RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PODERE CARPINETO,

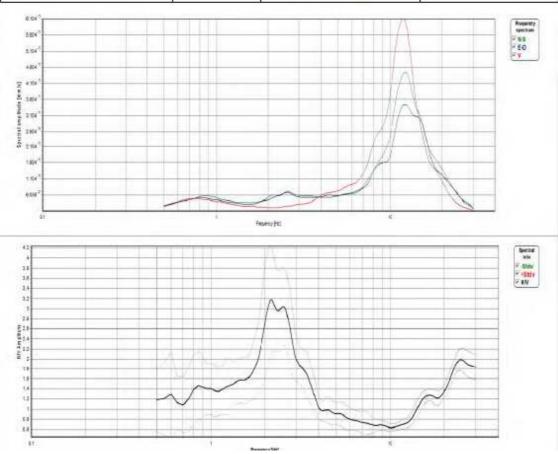
SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

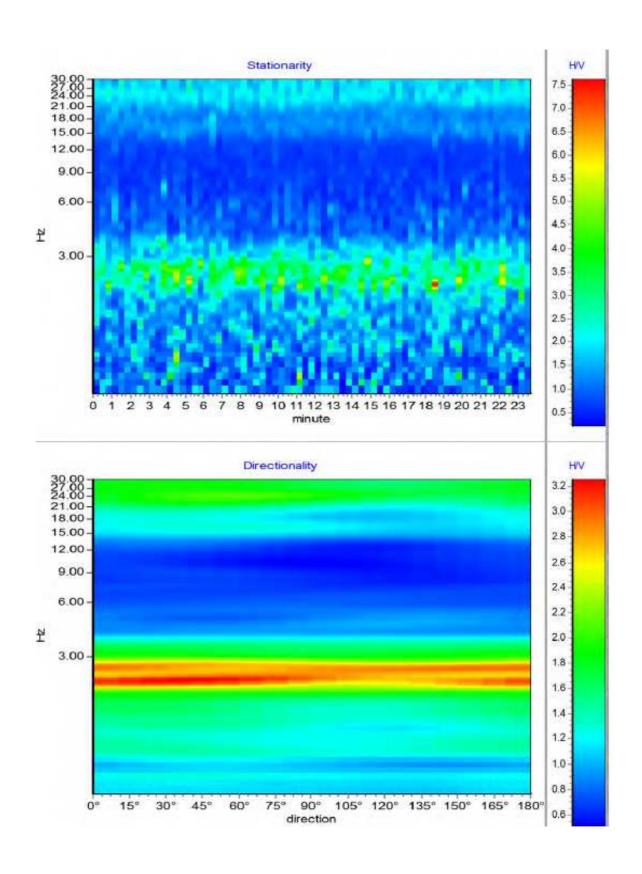
MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR


INDAGINE

DATA INDAGINE AGOSTO 2020

Sample frequency [Hz]:	250,00	Start recordings:	20/08/2020 09:49:24
Automatic spike removal:	No.	Stop recordings:	20/08/2020 10:19:24
LTA [s]:	5.0	High pass frequency [Hz]:	0.50
STA [s]:	0.5	Low pass frequency [Hz]:	30.00
Ratio:	1.9	Nw number of windows:	71
Lw Windows [s]:	20	Recording length [s]:	1800
Overlap Windows s]:	0.0	Discarded windows:	19
Konno-Ohmachi parameter:	40		li .



	Criteria for a reliable H/V curve	
fø > 10/Lw	2.31 >= 0.50	Yes
Nc(fø) > 200	3284.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 69</td><td>Yes</td></f<2fø<>	exceeded 0 out of 69	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.600	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	3,650	Yes
Aø > 2	3.01 > 2.00	Yes
	Criteria for a stable H/V peak	
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	10.26% > 5.00%	No
sf < e(fø)	0.2548 > 0.1156	No
sA(fø) < ?(fø)	0.8550 < 1.5800	Yes

Lw	window length
Nw	number of windows used in the analysis
f	current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/√ peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	maximum deviation from the fø peak, expressed as a percentage

	Threshold values for sf and sA(fø)									
fø frequency range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0										
e(fø) [Hz]	e(fø) [Hz] 0.25fø 0.2fø 0.15fø 0.1fø 0.05fø									
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58					

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 141 RT

RIFERIMENTO PRATICA EDILIZIA

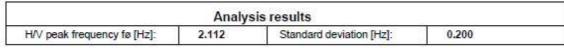
LOCALITÀ PODERE CARPINETO,

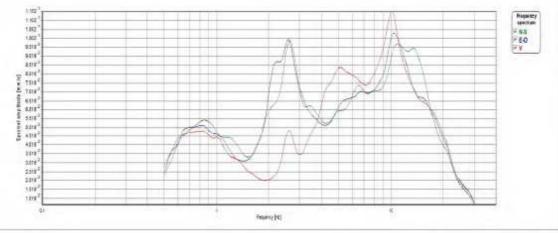
SERRE DI RAPOLANO

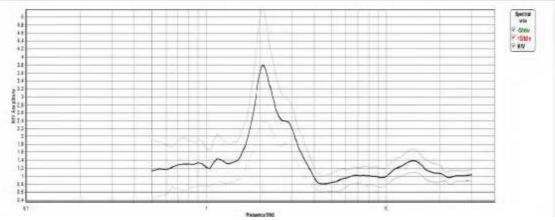
PROGETTO NUOVE INDAGINI A

SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

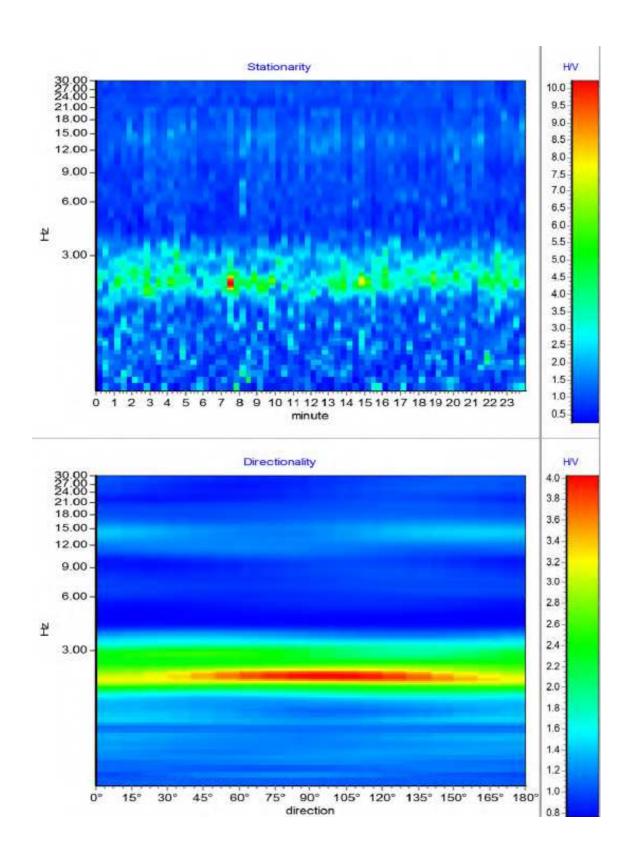
MICROZONAZIONE SISMICA


NUMERO E TIPO DI N.1 HVSR


INDAGINE


DATA INDAGINE AGOSTO 2020

Analysis parameters							
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 11:05:14				
Automatic spike removal:	No	Stop recordings:	20/08/2020 11:40:14				
LTA [s]:	5.0	High pass frequency [Hz]:	0.50				
STA [s]:	0.5	Low pass frequency [Hz]:	30.00				
Ratio:	1.9	Nw number of windows:	72				
Lw Windows [s]:	20	Recording length [s]:	2100				
Overlap Windows s]:	0.0	Discarded windows:	33				
Konno-Ohmachi parameter:	40						



	Criteria for a reliable H/V curve	
fø > 10/Lw	2.11 >= 0.50	Yes
Nc(fø) > 200	3041.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 63</td><td>Yes</td></f<2fø<>	exceeded 0 out of 63	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.550	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	3.200	Yes
Aø > 2	3.79 > 2.00	Yes
	Criteria for a stable H/V peak	
Fpeak[A(f)± sA(f)] = fø ± %	2.93% < 5.00%	Yes
sf < e(fø)	0.2001 > 0.1056	No
sA(fø) < ?(fø)	1.3883 < 1.5800	Yes

Lw Nw f f fø sf Nc = fø x Lw x Nw AH/V(f) Aø sA(f) sA(fø)	window length number of windows used in the analysis current frequency H/V peak frequency standard deviation of H/V peak frequency number of significant cycles H/V curve amplitude at frequency f H/V peak amplitude at frequency fø standard deviation of AH/V(f) standard deviation of AH/V(f) at fø frequency
sA(fø) e(fø)	standard deviation of AH/V(f) at fø frequency threshold value for the stability condition sf < e(fø)
?(fø) Fpeak[A(f)± sA(f)] = fø ± %	threshold value for the stability condition sA(fø) < ?(fø) maximum deviation from the fø peak, expressed as a percentage

	Threshold values for sf and sA(fø)								
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0				
e(fø) [Hz]	e(fø)[Hz] 0.25fø 0.2fø 0.15fø 0.1fø 0.05fø								
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58				

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 142 RT

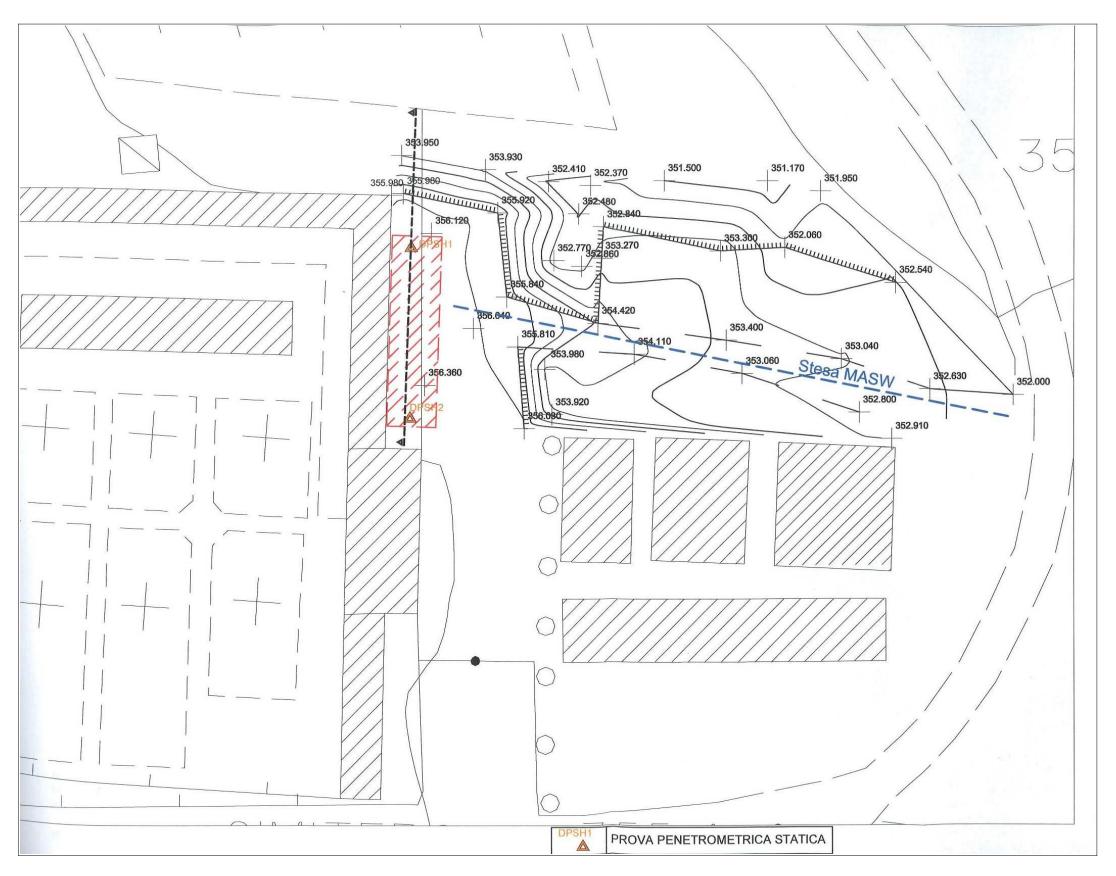
RIFERIMENTO PRATICA PDC 16/2016

EDILIZIA

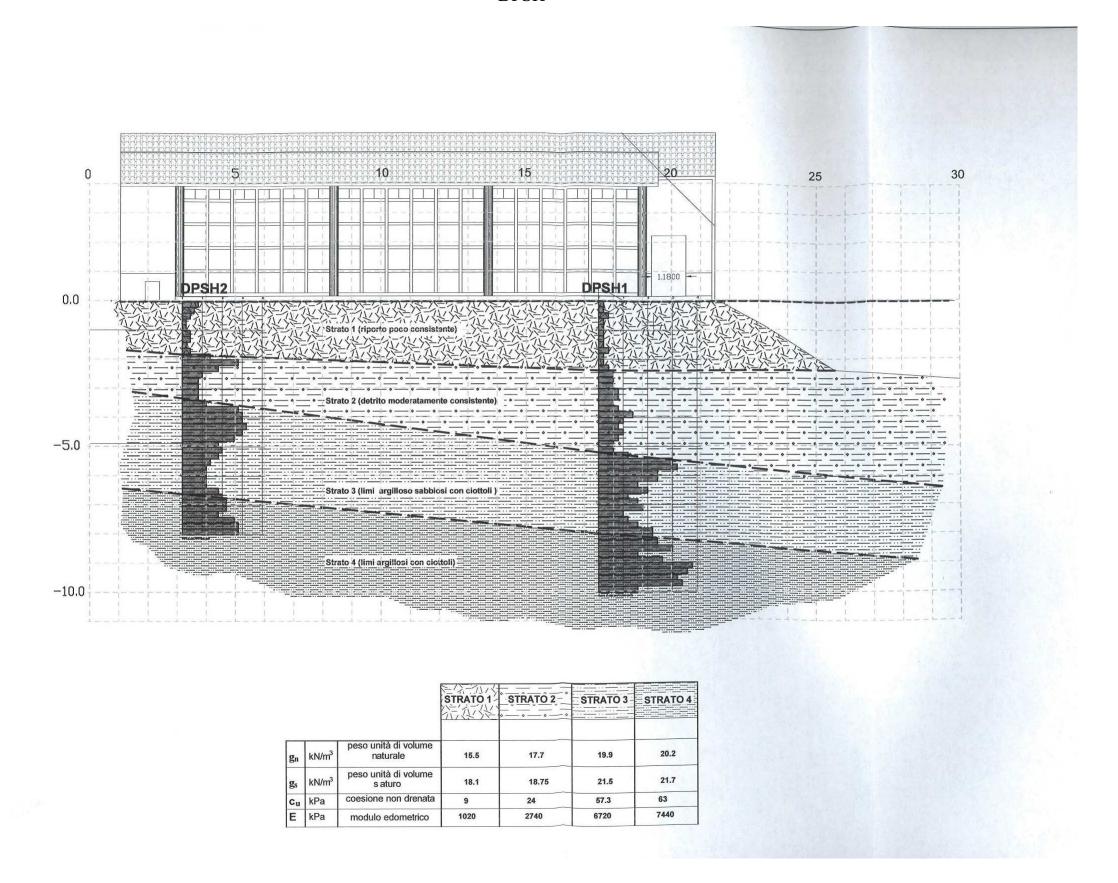
LOCALITÀ CIMITERO COMUNALE

SERRE DI RAPOLANO

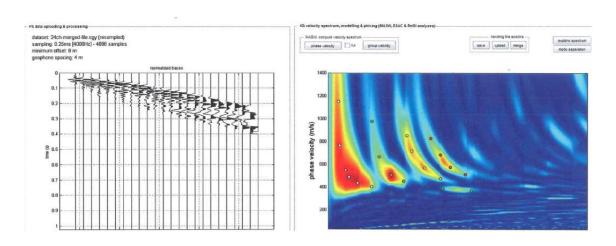
PROGETTO REALIZZAZIONE LOCULI

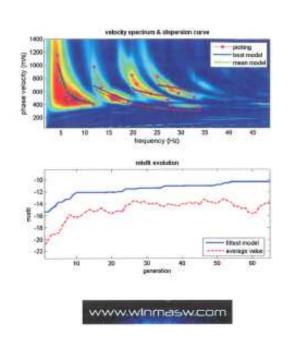

NUMERO E TIPO DI

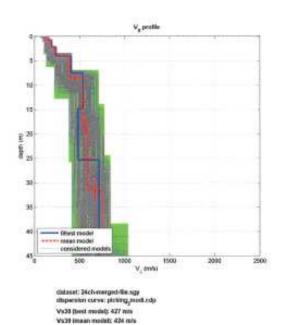
INDAGINE


N.2 PROVE PENETROMETRICHE

DINAMICHE N.1 MASW


DATA INDAGINE LUGLIO 2015




RISULTATI PROVE DPSH

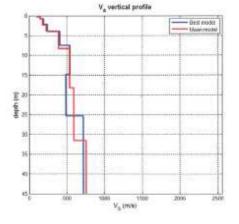
MASW

INDAGINE N. 142 RT

Mean model

Vs (m/s): 104, 148, 182, 228, 391, 538, 594, 759, 938, 2057 Standard deviations (m/s): 10, 23, 11, 13, 20, 50, 69, 59, 78, 309 Thickness (m): 0.3, 0.5, 1.6, 1.6, 4.4, 9.9, 13.3, 20.1, 37.2 Standard deviations (m/s): 0.0, 0.1, 0.2, 0.2, 0.7, 1.8, 2.3, 2.9, 5.6

Density (gr/cm3) (approximate values): 1.66 1.77 1.81 1.88 2.01 2.06 2.09 2.15 2.15 2.34


Seismic/Dynamic Shear modulus (MPa) (approximate values): 18 39 60 98 308 597 738 1238 1895 9888
Estimated static shear modulus (MPa) (approximate values): 0 0 0 0 0 0 0 0 0 853

Analyzing Phase velocities

Considered dispersion curve: picking_3modi.cdp Analysis: Rayleigh Waves

Approximate values for Vp and Poisson (please, see manual)

Vp (m/s): 198 306 372 483 846 1029 1169 1483 1510 3196 Poisson: 0.31 0.35 0.34 0.36 0.36 0.31 0.33 0.32 0.19 0.15

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 143 RT

RIFERIMENTO PRATICA EDILIZIA

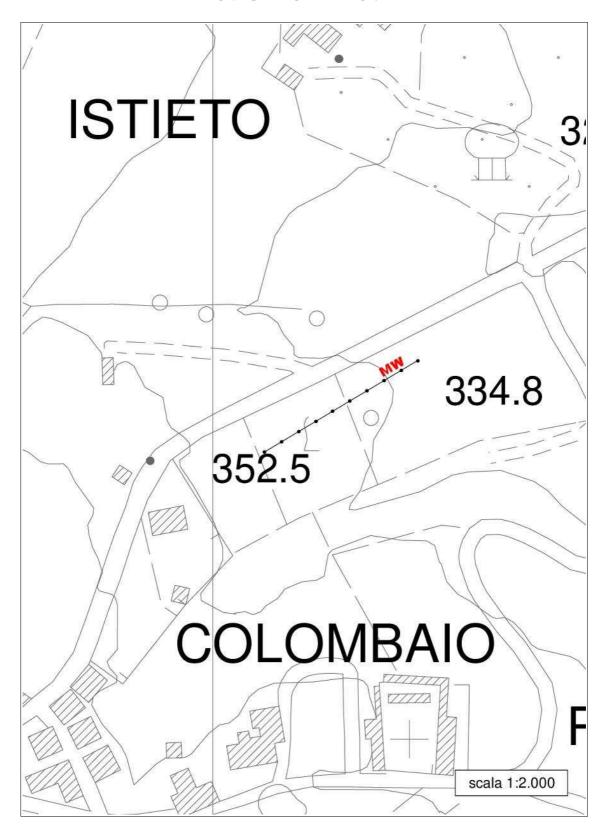
> LOCALITÀ ZONA COLOMBAIO SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

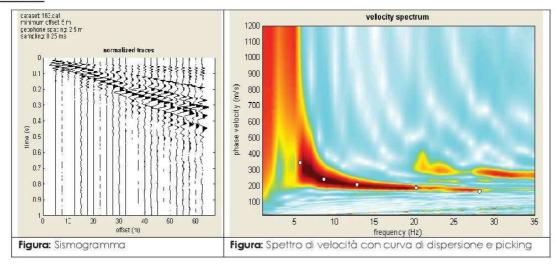
SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

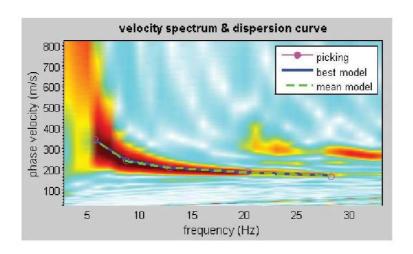
MICROZONAZIONE SISMICA

DI SECONDO LIVELLO


NUMERO E TIPO DI

INDAGINE


N.1 MASW


DATA INDAGINE NOVEMBRE - DICEMBRE

2020

MASW M

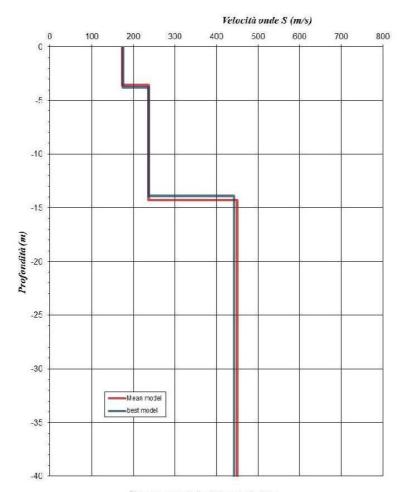


Figura: modello interpretativo

L'interpretazione della prova MASW, relativamente alle onde S, ha reso evidente le seguenti successioni:

		PROVA	MASW				
	Best m	odel	Mean model				
Profondi (n	tà da P.C n)	Velocità Onde S (m/s)		ità da P.C m)	Velocità Onde S (m/s)		
0	3,8	176	0	3,6	173		
3,8	13,9	238	3,6	14,3	237		
13,9	40	442	14,3	40	449		
	Vseq = 29	99 m/s		Vseq = 2	97 m/s		

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 144 RT

RIFERIMENTO PRATICA

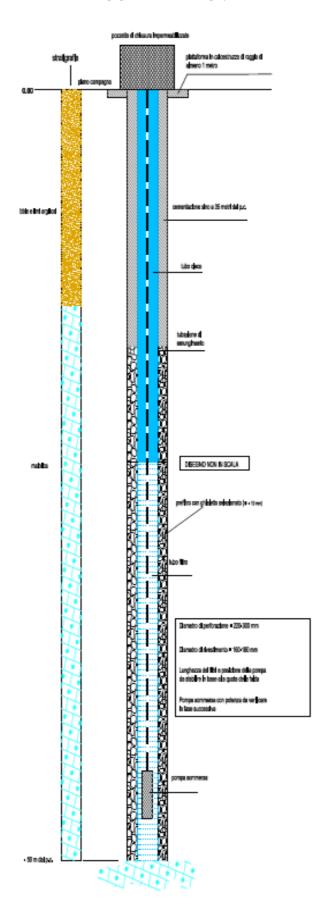
EDILIZIA

LOCALITÀ ISTIETO

SERRE DI RAPOLANO

PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA


ACQUA AD USO DOMESTICO

NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO

DATA INDAGINE DICEMBRE 2017

(PROVINCIA DI SIENA)

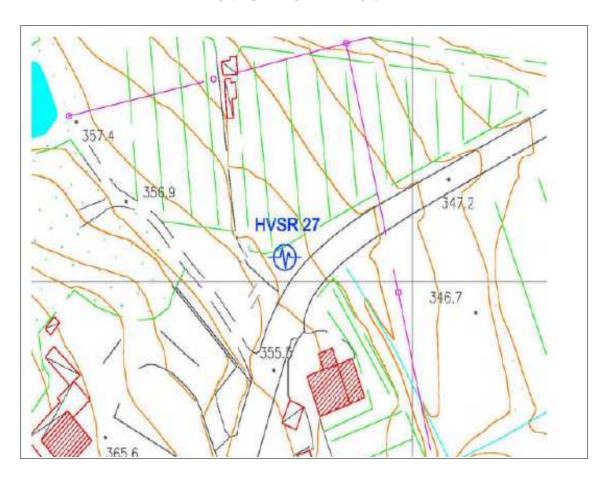
SCHEDA INDAGINE 145 RT

RIFERIMENTO PRATICA EDILIZIA

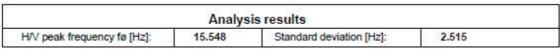
LOCALITÀ COLOMBAIO,

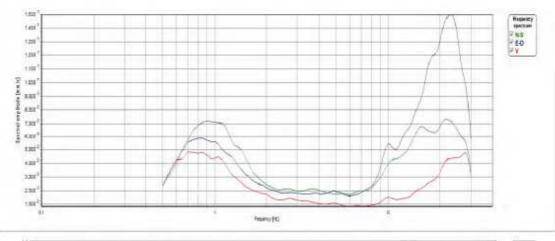
SERRE DI RAPOLANO

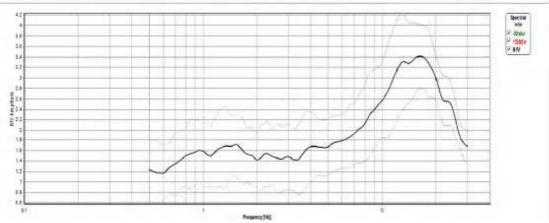
PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

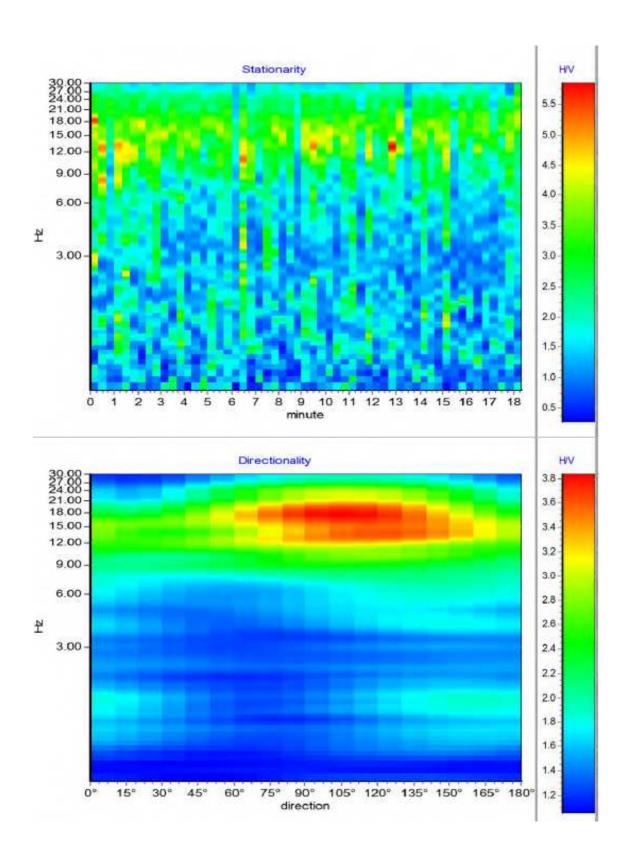
MICROZONAZIONE SISMICA


NUMERO E TIPO DI N.1 HVSR


INDAGINE


DATA INDAGINE AGOSTO 2020

Analysis parameters						
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 11:43:05			
Automatic spike removal:	No	Stop recordings:	28/09/2012 12:18:05			
LTA [s]:	5.0	High pass frequency [Hz]:	0.50 30.00			
STA [s]:	0.5	Low pass frequency [Hz]:				
Ratio:	1.9	Nw number of windows:	55			
Lw Windows [s]:	20	Recording length [s]:	2100			
Overlap Windows s]:	0.0	Discarded windows:	50			
Konno-Ohmachi parameter:	40					



	Criteria for a reliable H/V curve	
fø > 10/Lw	15.55 >= 0.50	Yes
Nc(fø) > 200	17103.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 445</td><td>Yes</td></f<2fø<>	exceeded 0 out of 445	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	3.900	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	29.300	Yes
Aø > 2	3.39 > 2.00	Yes
	Criteria for a stable H/V peak	
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	16.71% > 5.00%	No
sf < e(fø)	2.5148 > 0.7774	No
sA(fø) < ?(fø)	0.6526 < 1.5800	Yes

Lw	window length
Nw	number of windows used in the analysis
f	current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)							
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø		
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58		

(PROVINCIA DI SIENA)

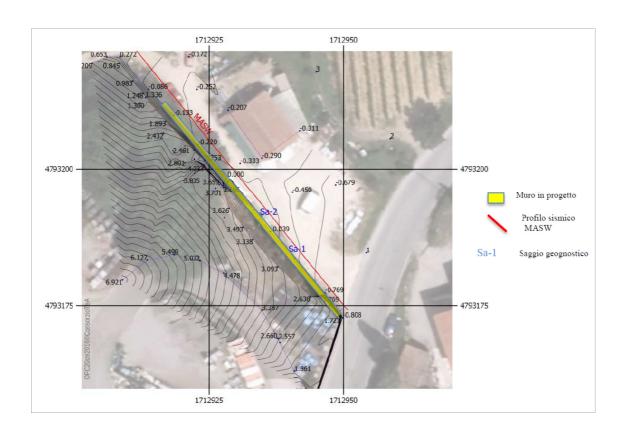
SCHEDA INDAGINE 146 RT

RIFERIMENTO PRATICA SCIA N. 31 DEL 2018

EDILIZIA

LOCALITÀ VIA SERRAIA 44,

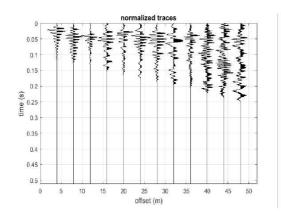
SERRE DI RAPOLANO

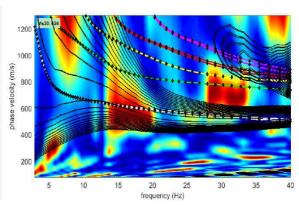

PROGETTO REALIZZAZIONE DI UN

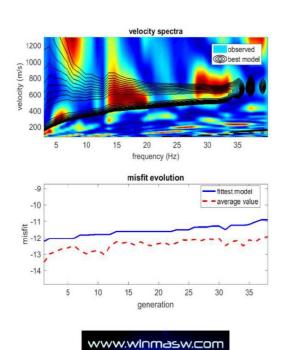
MURO DI CONTENIMENTO

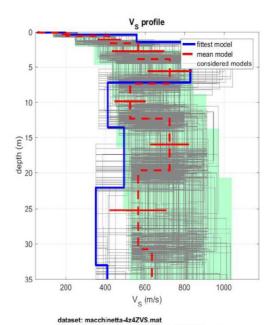
NUMERO E TIPO DI N. 2 SAGGI GEOGNOSTICI

INDAGINE N. 1 MASW


DATA INDAGINE -




RISULTATI PROVE SAGGI GEOGNOSTICI



MASW

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 147 RT

RIFERIMENTO PRATICA PDC N. 24 DEL 2006

EDILIZIA

LOCALITÀ VIA SERRAIA,

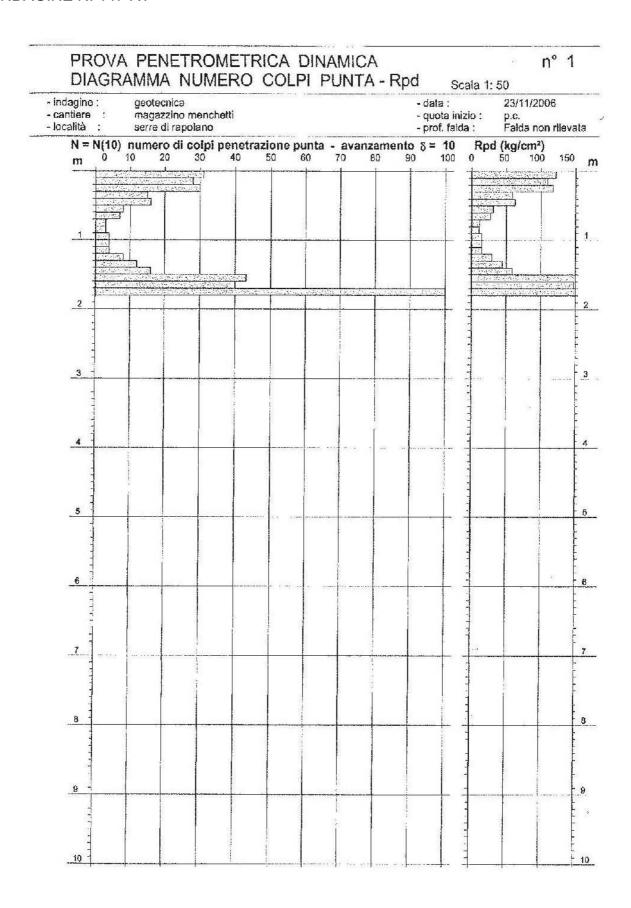
SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE DI UN

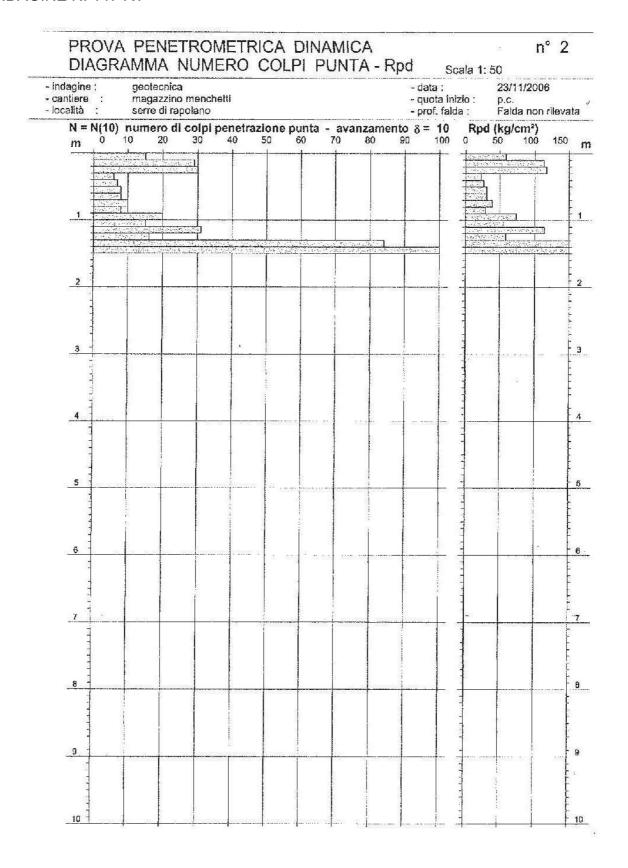
MAGAZZINO INTERRATO

NUMERO E TIPO DI N. 2 PROVE

INDAGINE PENETROMETRICHE


DINAMICHE

DATA INDAGINE NOVEMBRE 2006


RISULTATI PROVE DL 1

- c - lo	ndagine antiere ocalità ote :	: mag	ecnica azzino menchet e di rapolano ale	ti			**		a inizio : falda :	p.c.	11/2006 da non rilev	ata
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	(m)	N(colpi p)	Rpd(kg/	cm²)	N(colpi r)	asta
- 00.0	0.10	31	121.5		1	0.90 -	1.00	4	14.7			2
0.10 -	0.20	28	109.7		1	1.00 -	1.10	4	14.7	,	3 <u>3-3-3-3</u>	2
0.20 -	0.30	30	117.6	***	1	1.10 -	1.20	4 8	14.7	•	-	2
0.30 -	0.40	15	58.8	-	1	1.20 -	1.30		29.5	5		
.40 -	0.50	16	62.7	10000	1	1.30 -	1.40	12	44.2	!	BAY:	2 2 2 2 2 2
0.50 -	0.60	8	31.4	-	1	1.40 -	1.50	16	58.9	}		2
- 03.0	0.70	7	27.4	20 to 100	1	1.50 -	1.60	43	158.4		(Acceptable)	2
70 -	0.80	3	11.8		1	1.60 -	1.70	40	147.4	į.		2
- 08.0	0.90	3	11.1		2	1.70 -	1.80	100	368.4		41.16.44.50	2

DL 2

	ween was a care		OVA PENE BELLE VALO					MICA		94	n°	2
- c - lo	ndagine antiere ocalità iote :	: m	otecnica agazzino menchet rre di rapolano tuale	ti				7.0	a Inizio : falda :	p.c.	1 <i>1/2</i> 006 da n on rile	vata
Pro	f.(m)	N(colpi p) Rpd(kg/cm²)	N(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/c	cm²)	N(colpi r) ast
- 00.0	0.10	15	58.8	-	1	0.80 -	0.90	8	29.5		-	2
0.10 -	0.20	29	113.7		1	0.90 -	1.00	20	73.7			
0.20 -	0.30	30	117.6		1	1.00 -	1.10	15	55.3			2
1.30 -	0.40	6	23.5	-	1	1.10 -	1.20	31	114.2			2
.40 -	0.50	7 8 8	27.4	h	1	1.20 -	1.30	16	58.9		****	2
1.50 ~	0.60	8	31.4		1	1.30 -	1.40	84	309.5			2
).6D -	0.70		31.4		1	1.40 -	1.50	100	368.4		******	2
0.70 -	0.80	10	39.2		1						12	

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 148 RT

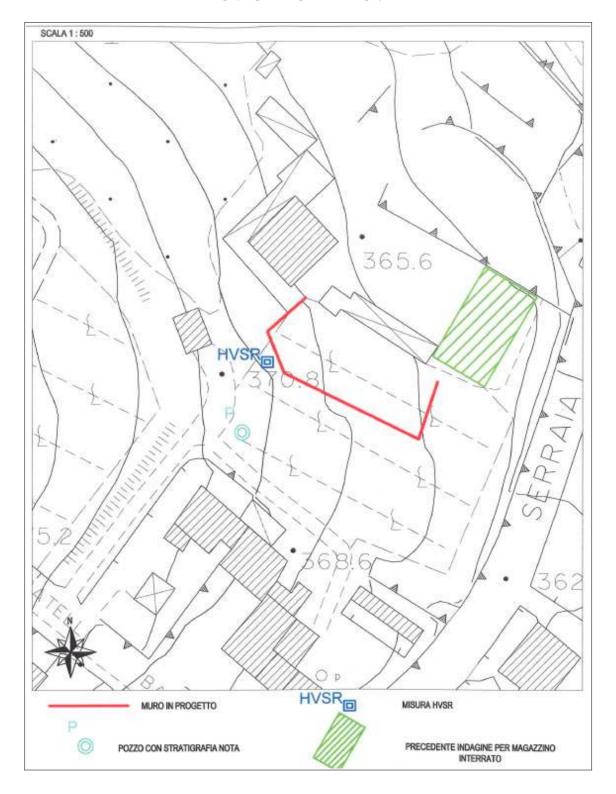
RIFERIMENTO PRATICA PDC 01/2013

EDILIZIA

LOCALITÀ VIA SERRAIA,

SERRE DI RAPOLANO

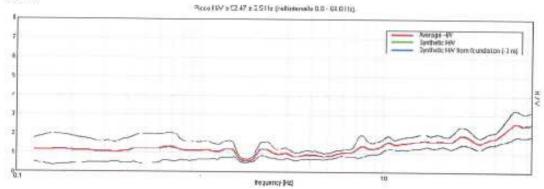
TERME

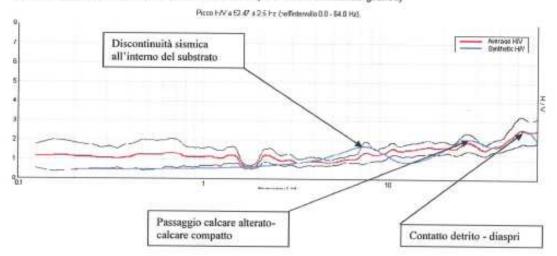

PROGETTO REALIZZAZIONE DI UN

MURO DI SOSTEGNO

NUMERO E TIPO DI N. 1 HVSR

INDAGINE


DATA INDAGINE DICEMBRE 2011


RISULTATI PROVE HVSR

PROFONDITA' (m)	LITOLOGIA
0 -1	coltre terrigena di suolo
1-5	calcari selciferi fratturati
5 - 50	calcari selciferi

Nel sottostante grafico il rapporto H/V misurato: in rosso l'H/V medio mentre in nero l'intervallo di confidenza al 95%

Il fit della curva H/V effettuato tenendo conto del vincolo stratigrafico di circa 1 mt del contatto suolo-roccia ha permesso la ricostruzione della curva teorica (in blu nel sottostante grafico)

Spessore simostrati [m]	Profondità dal p.c. [m]	Velocità onde Vs [m/s]	Interpretazione stratigrafica
1	0-1	204	Suolo terrigeno
3,8	1 – 4.8	470	Calcari molto alterati
20	4.80 – 24.80	770	Calcari mediamente alterati
Semispazio	24.80	>1300	Calcari compatti

È stato quindi possibile stimare, tramite la sottostante formula, la velocità equivalente delle onde Vs nei primi 30 m dal p.c. (Vs₃₀) come esplicitamente richiesto dalle Norme Tecniche per le Costruzioni del 14 gennaio 2008:

$$\hat{\mathcal{O}}_s = \frac{H}{\sum_{i=1}^n \frac{h_i}{\mathcal{V}_i}}$$
 = Vs₃₀ = 698 m/s

Dalla ricostruzione del quadro geofisico emerso dal seguente studio si ritiene opportuno inserire il sito in oggetto di studio nella Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).

(PROVINCIA DI SIENA)

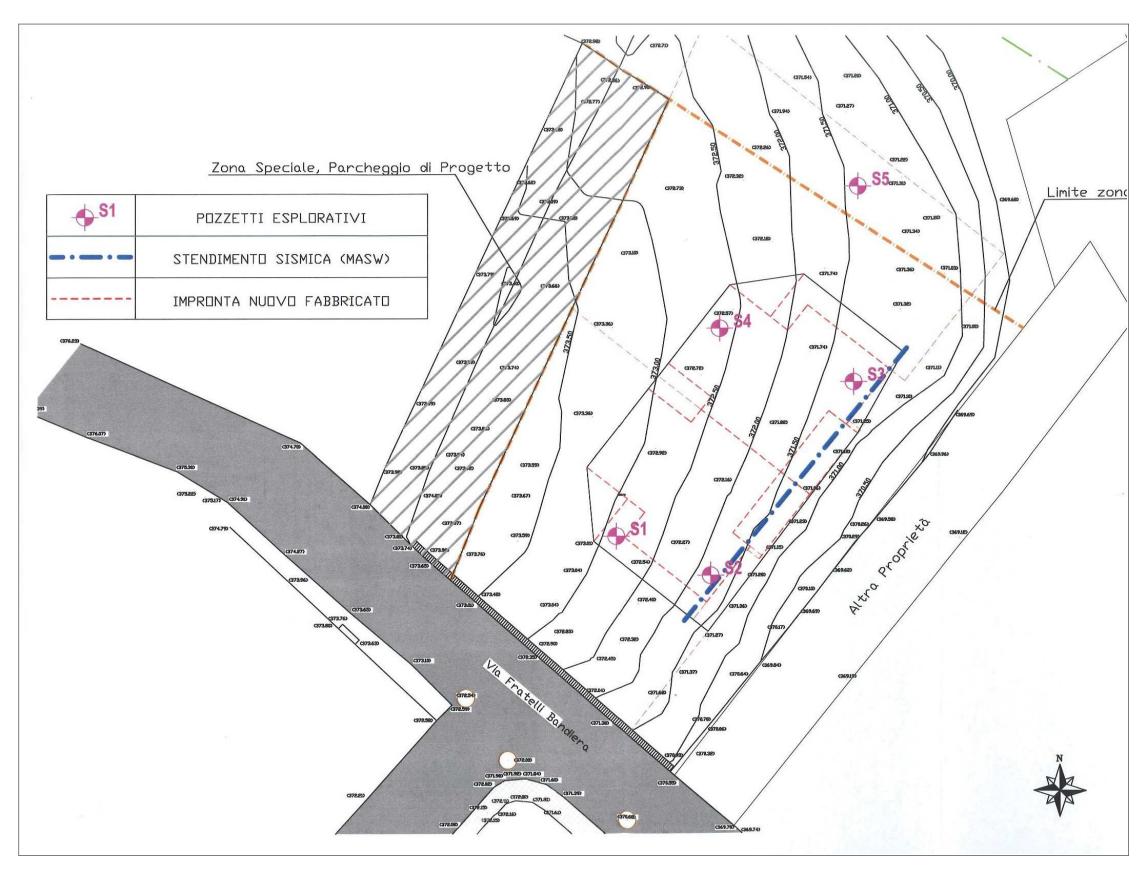
SCHEDA INDAGINE 149 RT

RIFERIMENTO PRATICA PDC 13/2014

EDILIZIA

LOCALITÀ VIA F.LLI BANDIERA,

SERRE DI RAPOLANO


PROGETTO COSTRUZIONE DI UNA

VILLA BIFAMILIARE

NUMERO E TIPO DI N.5 SAGGI ESPLORATIVI

INDAGINE N.1 MASW

DATA INDAGINE DICEMBRE 2013

RISULTATI PROVE SAGGI ESPLORATIVI

0.00 – 1.0 m	Coltre terrigena (argilla sabbiosa rossastra con ciottoli)
1.0 m	Substrato roccioso (Maiolica)

SAGGIO S2

0.00 – 1.2 mt Coltre terrigena

1.2 m Substrato roccioso

SONDAGGI E DATI DI BASE

INDAGINE N. 149 RT

SAGGIO S3

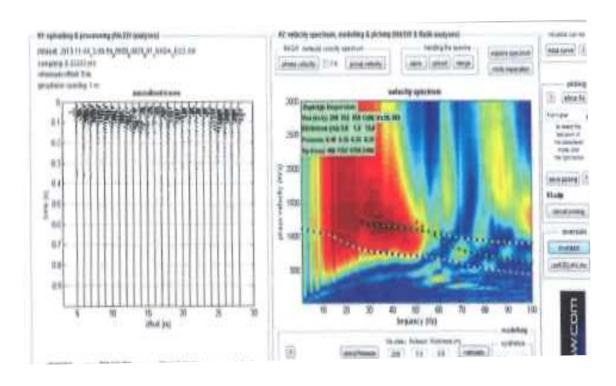
0.00 – 0.9 mt Coltre terrigena

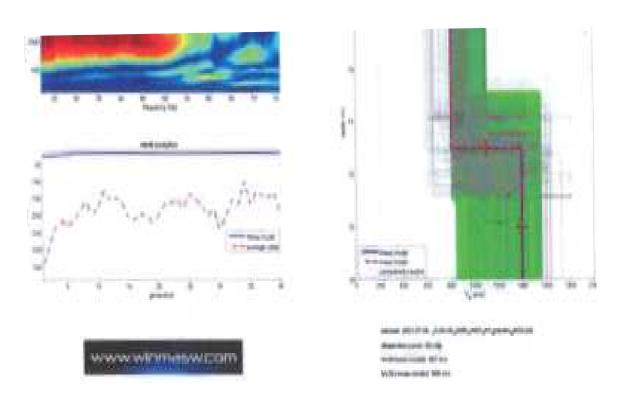
0.9 m Substrato roccioso

 SAGGIO S4

 0.00 - 1.3 mt
 Coltre terrigena

 1.3 m
 Substrato roccioso


INDAGINE N. 149 RT

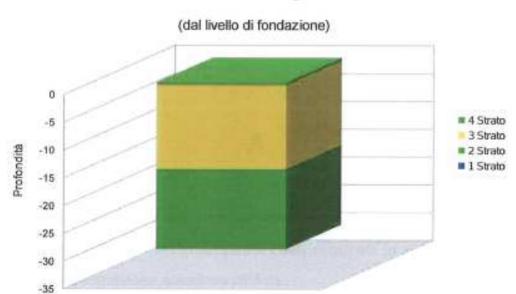

SAGGIO S5

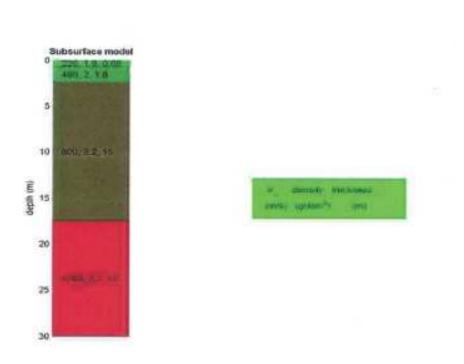
0.00 – 0.9 mt	Coltre terrigena
0.9 m	Substrato roccioso

MASW

Profondità	livello fondazione	2	Profondità livello campagna	0	Profondità	(m) dal liv fond	
Strato	Vs (m/s)	Vp (m/s)	Rapporto (Vp/Vs)	Spessore (m)	da	а	
1	226	554	2,45	0,7	0	0	
2	460	957	2,08	1,8	0	-0,5	
3	800	1665	2,08	15,1	-0,5	-15,6	
4	1393	2900	2,08	12,4	-15,6	-30	
Strato 1	Poisson v	Densità (g/cm³)	Shear G (kPa)	Bulk Ev (kPa)	Young E (kPa)		
	0,40	1,91	97555,16	456136,01	273189,53		
2	0,35	2,04	431664	1292779,96	1165293,41		
3	0,35	2,18	1395200	4183183,83	3766822,43		
4	0,35	2,31	4482437,19	13450517,08	12102868,85		
1	0,000).		1	0,000		
2	0,001			2	0,001		
3	0,019			3	0,019		
4	0,03				0,020	-	
٧	/S 30	990,12	GEOMA di Marco Pi Res. Fisch Via Branc 52048 Marco S Savi I. 328-7255608 marzupin ma	interiore 360 m/s)		Rapporto Vs substrato / Vs copertura (attenzione quando > 2.2)	
	- 1	C.I	. MRZ MRC 85501 A390P - P	1.03318000928	0	0	

Il valore della velocità media equivalente delle onde di taglio dei primi 30 metri (Vs30) dal livello delle fondazioni è risultato :


VS30 = 990 m/s


che comporta una classificazione del suolo in categoria:

A

A - Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.

Profilo sismostratigrafico

(PROVINCIA DI SIENA)

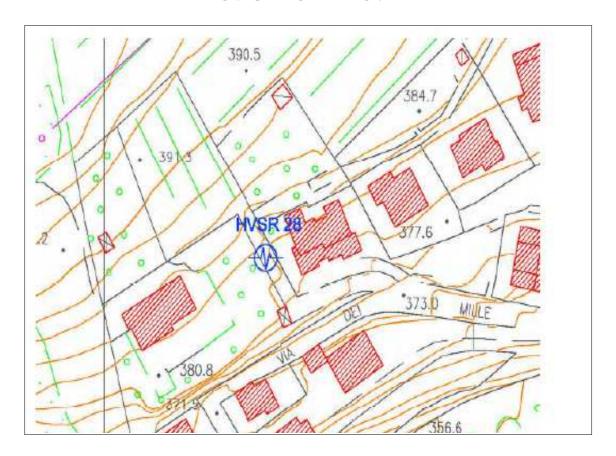
SCHEDA INDAGINE 150 RT

RIFERIMENTO PRATICA EDILIZIA

LOCALITÀ SERRAIA,

SERRE DI RAPOLANO

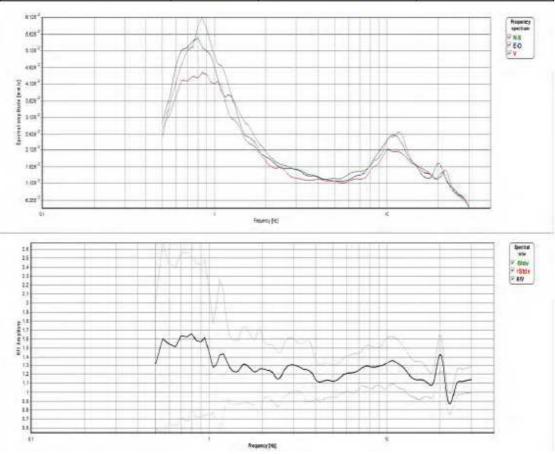
PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

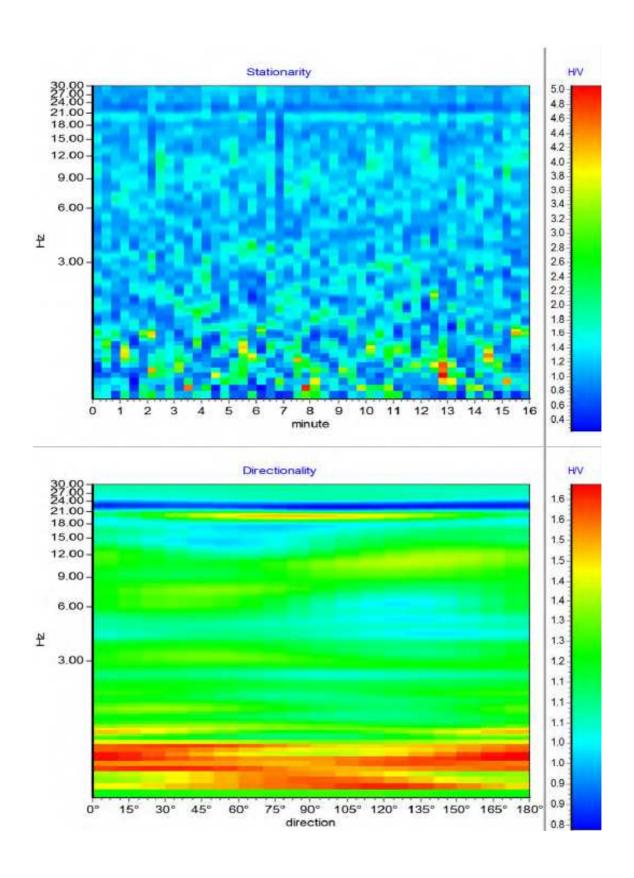
NUMERO E TIPO DI N.1 HVSR

INDAGINE


DATA INDAGINE AGOSTO 2020

RISULTATI PROVE

	Analysi	is parameters	40
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 12:23:42
Automatic spike removal:	No	Stop recordings:	20/08/2020 12:53:42
LTA [s]:	5.0	High pass frequency [Hz]:	0.50
STA [s]:	0.5	Low pass frequency [Hz]:	30.00
Ratio:	1.9	Nw number of windows:	48
Lw Windows [s]:	20	Recording length [s]:	1800
Overlap Windows s]:	0.0	Discarded windows:	42
Konno-Ohmachi parameter:	40	i i	1


Analysis results						
H/V peak frequency fø [Hz]:	0.795	Standard deviation [Hz]:	0.198			

	Criteria for a reliable H/V curve	
fø > 10/Lw	0.79 >= 0.50	Yes
Nc(fø) > 200	763.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 22</td><td>Yes</td></f<2fø<>	exceeded 0 out of 22	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	Not exist	No
Exists f in [fø,4fø] where A(f) < Aø/2	Not exist	No
Aø > 2	1.66 < 2.00	No
	Criteria for a stable H/V peak	
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	2435.30% > 5.00%	No
sf < e(fø)	0.1977 > 0.1192	No
sA(fø) < ?(fø)	0.8570 < 2.0000	Yes

Lw	window length
Nw	number of windows used in the analysis
f	current frequency
fø	H/V peak frequency
sf	standard deviation of H/√ peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/√ peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
Fpeak[A(f)± sA(f)] = fø ± %	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)							
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø		
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58		

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 151 RT

RIFERIMENTO PRATICA PDC N. 4 DEL 2019

EDILIZIA

LOCALITÀ LA FONTE,

SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE DI

UN'AUTORIMESSA E

SISTEMAZIONI ESTERNE

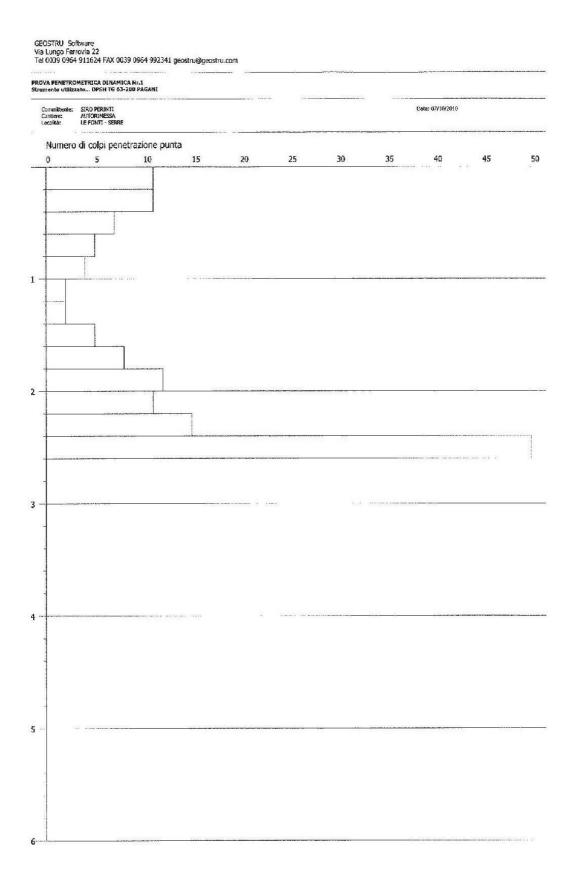
NUMERO E TIPO DI N. 2 PROVE

> INDAGINE **PENETROMETRICHE**

DINAMICHE N. 1 MASW

N. 1 SISMICA A RIFRAZIONE

DATA INDAGINE -


RISULTATI PROVE DPSH 1

PROVA ... Nr.1

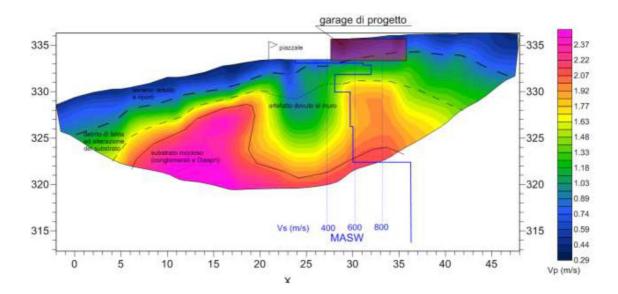
Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 07/10/2010 6.00 mt

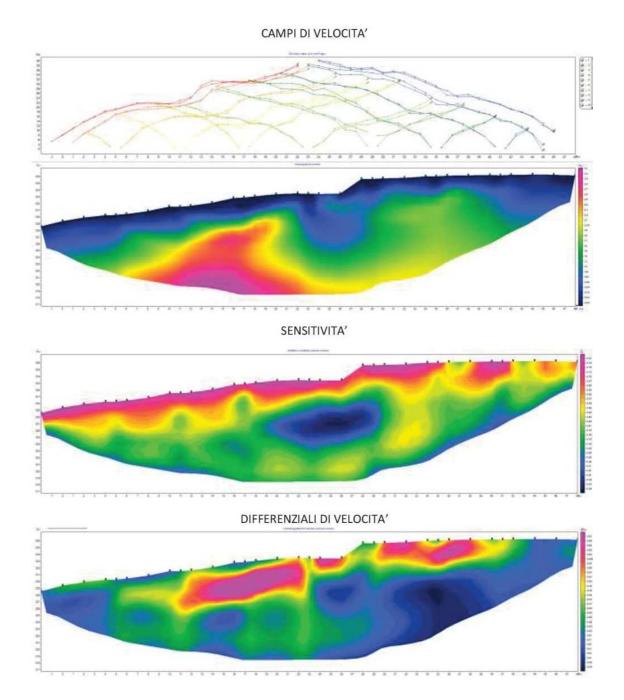
Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res, dinamica (Mpa)	Pres, ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.20	11	0.855	9.69	11.33	484.34	566.73
0.40	11	0.851	9.64	11.33	482.16	566.73
0.60	7	0.847	5.61	6.62	280.35	330.99
0.80	5	0.843	3.99	4.73	199.38	236.42
1.00	4	0.840	3.18	3.78	158.83	189.14
1.20	2	0.836	1.58	1.89	79.09	94.57
1.40	2 2	0.833	1.58	1.89	78,76	94.57
1.60	5	0.830	3.62	4.37	181.23	218.46
1.80	8	0.826	5.78	6.99	288.84	349.54
2.00	12	0.823	8.63	10.49	431.61	524.31
2.20	11	0.820	7.88	9.61	394.17	480.62
2.40	15	0.767	10.06	13,11	502.78	655.39
2.60	50	0.614	24.94	40.61	1247.15	2030.39
2.80	0	0.811	0.00	0.00	0.00	0.00
3.00	0	0.809	0.00	0.00	0.00	0.00
3.20	Ō	0.806	0.00	0.00	0.00	0.00
3.40	0	0.803	0.00	0.00	0.00	0.00
3,60	0	0.801	0.00	0.00	0.00	0.00
3.80	0	0.798	0.00	0.00	0.00	0.00
4.00	0	0.796	0.00	0.00	0.00	0.00
4.20	Ō	0.794	0.00	0.00	0.00	0.0
4.40	0	0.791	0.00	0.00	0.00	0.00
4.60	0	0.789	0.00	0.00	0.00	0.0
4.80	Ō	0.787	0.00	0.00	0.00	0.00
5.00	0	0.785	0.00	0.00	0.00	0.00
5.20	0	0.783	0.00	0.00	0.00	0.0
5.40	0	0.781	0.00	0.00	0.00	0.0
5.60	0	0.779	0.00	0.00	0.00	0.0
5.80	0	0.777	0.00	0.00	0.00	0.0
6.00	0	0.775	0.00	0.00	0.00	0.00

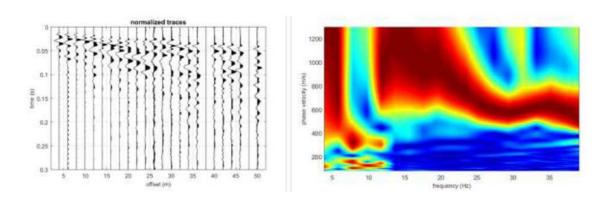
DPSH 2

PROVA ... Nr.2

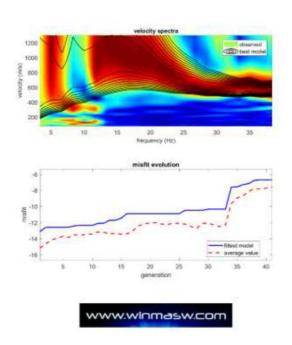

Strumento utilizzato... DPSH TG 63-200 PAGANI
Prova eseguita in data
Profondità prova 4.00 mt

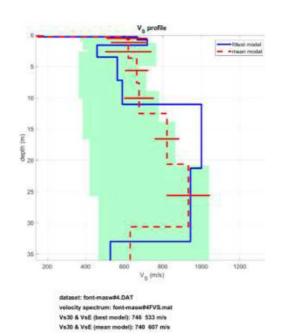

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio


Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.20	2	0.855	1.76	2.06		103.04
0.40	5	0.851	4.38	5.15		257.60
0.60	4	0.847	3.20	3.78	160.20	189.14
0.80	3	0.843	2.39	2.84	119.63	141.85
1.00	4	0.840	3.18	3.78	158.83	189.14
1.20	4	0.836	3.16	3.78	158.17	189.14
1.40	5	0.833	3.94	4.73	196.91	236.42
1.60	4	0.830	2.90	3,50	144.98	174.77
1.80	4	0.826	2.89	3.50	144.42	174,77
2.00	5	0.823	3.60	4.37	179.84	218.46
2.20	5	0.820	3.58	4.37	179.17	218.46
2.40	5	0.817	3.57	4.37		218.46
2.60	4	0.814	2.65	3.25	132.26	162.43
2.80	1	0.811	0.66	0.81	32.95	40.61
3.00	3	0.809	1.97	2,44	98.52	121.82
3.20	2	0.806	1.31	1.62	65.46	81.22
3.40	4	0.803	2.61	3.25	130.50	162.43
3.60	6	0.801	3.65	4.55	182.26	227.58
3.80	18	0.748	10.22	13.65	510.97	682.74
4.00	50	0.596	22.61	37.93	1130.35	1896.49

SISMICA A RIFRAZIONE


MASW



0-3 m: riporto; 100<\/s<200 m/s;

3-5 m: roccia molto alterata Vs = 250-450 m/s

>5 m: roccia alterata; Vs> 500 m/s.

(PROVINCIA DI SIENA)

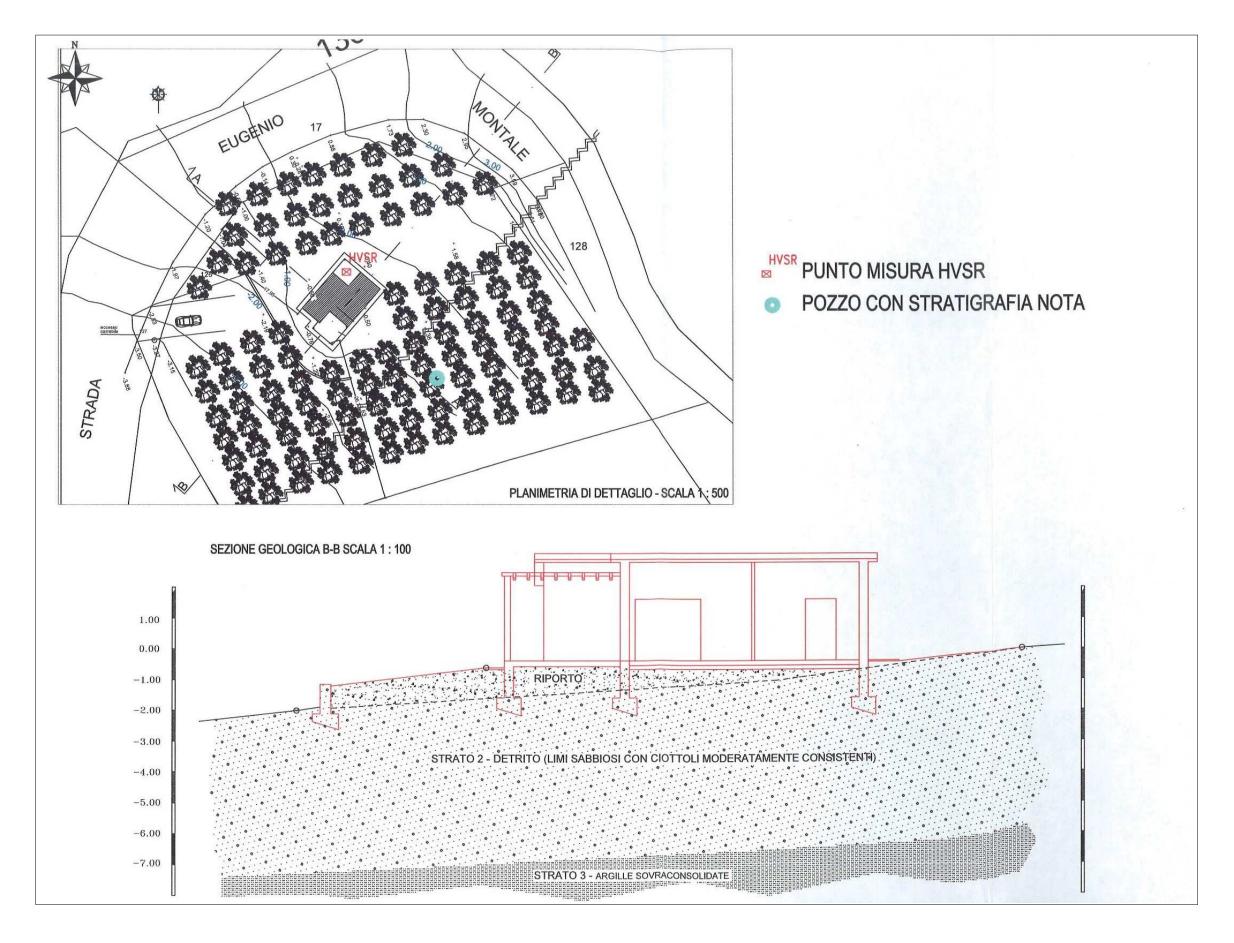
SCHEDA INDAGINE 152 RT

RIFERIMENTO PRATICA PDC N. 69 DEL 2011

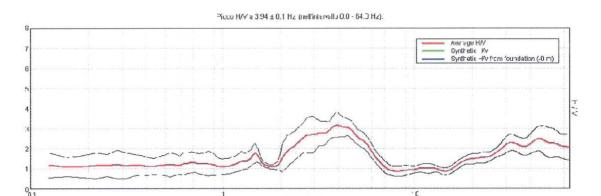
EDILIZIA

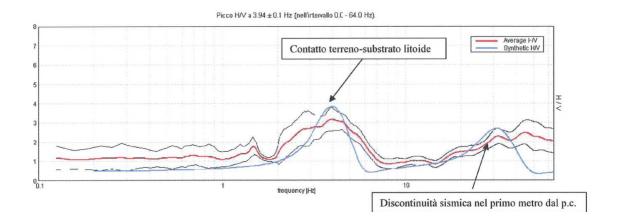
LOCALITÀ PODERE LA FONTE

SERRE DI RAPOLANO


PROGETTO SOSTITUZIONE EDILIZIA DI

FABBRICATI


NUMERO E TIPO DI N. 1 HVSR


INDAGINE

DATA INDAGINE OTTOBRE 2010

RISULTATI PROVE HVSR

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 153 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 7050 DEL

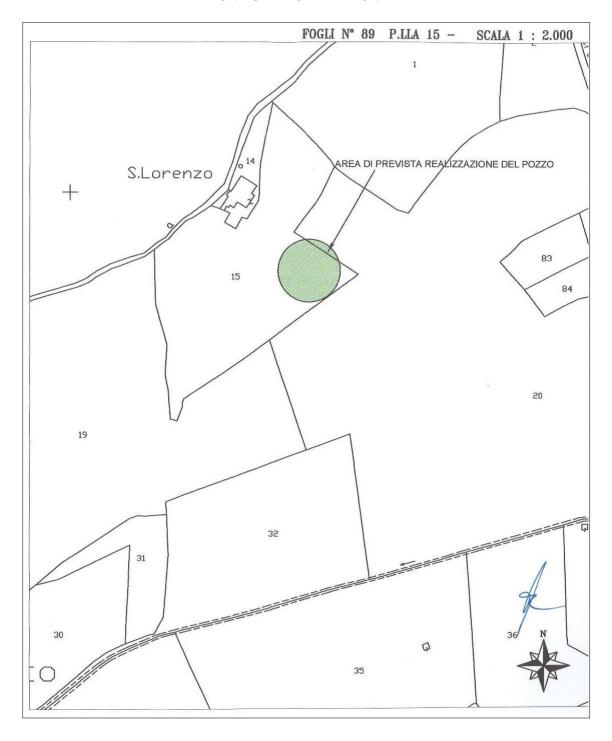
EDILIZIA 21/05/2008

LOCALITÀ LOCALITÀ PODERE SAN

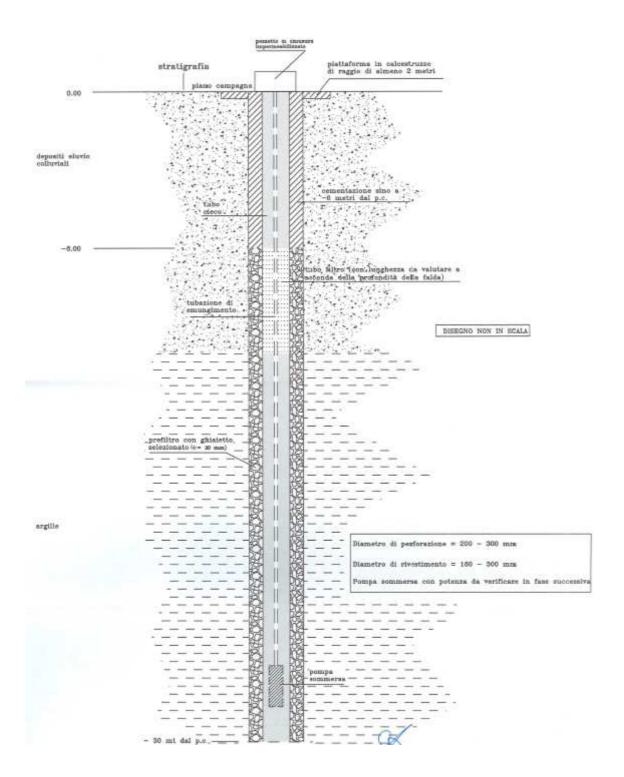
LORENZO

SERRE DI RAPOLANO

PROGETTO PERFORAZIONE DI UN


POZZO PER RICERCA

ACQUA AD USO DOMESTICO


NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO

DATA INDAGINE MARZO 2008

RISULTATI PROVE

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 154 RT

RIFERIMENTO PRATICA PDC N. 20 DEL 2007

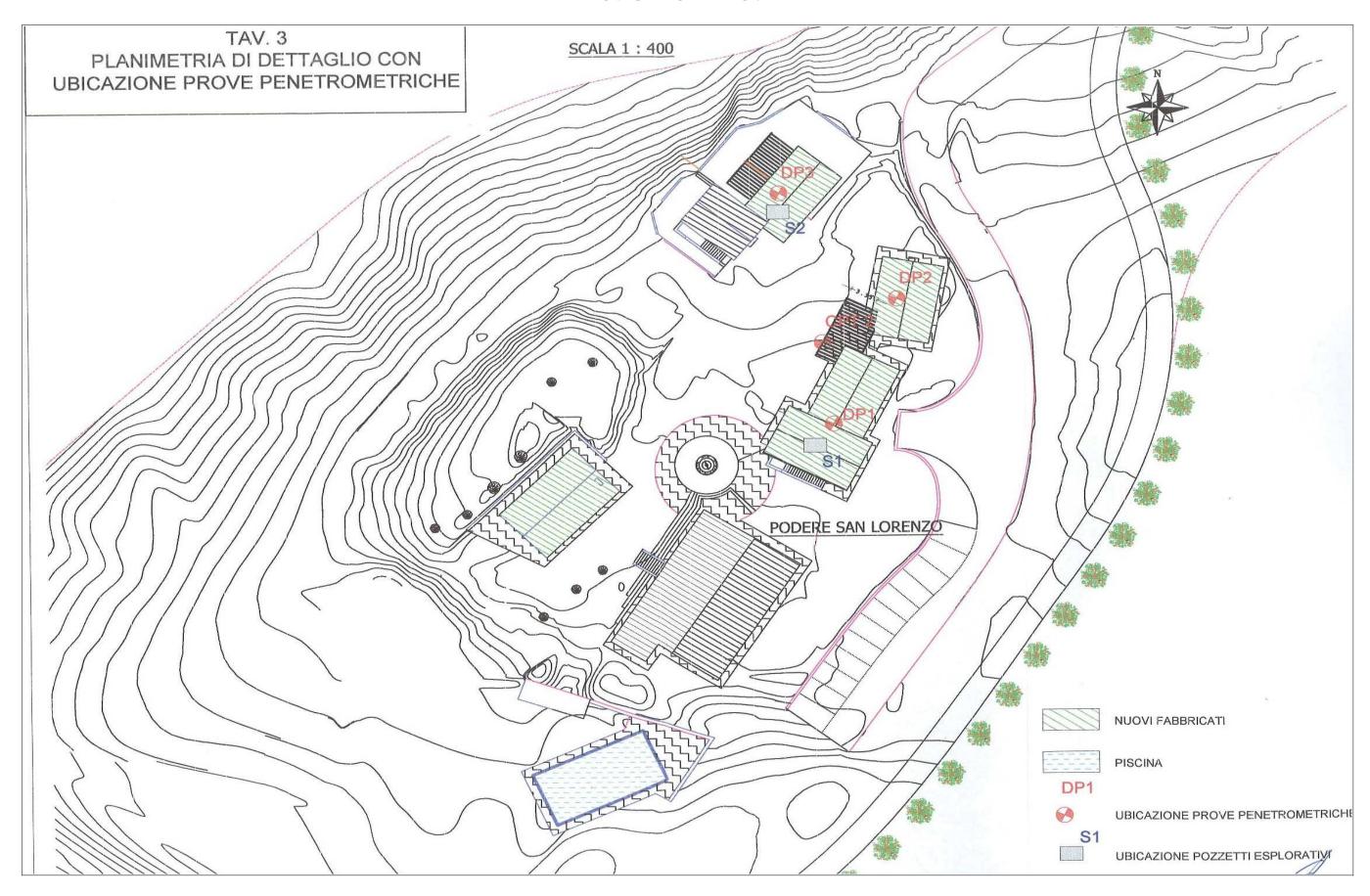
EDILIZIA

LOCALITÀ PODERE SAN LORENZO,

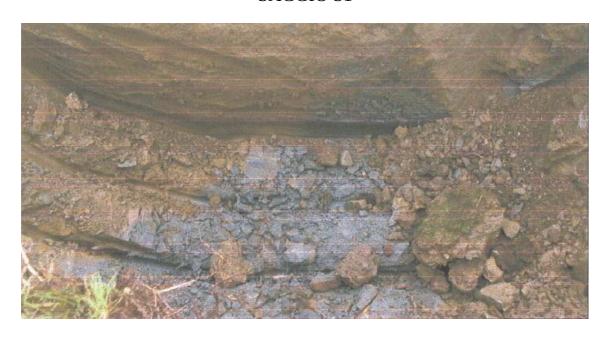
SERRE DI RAPOLANO

PROGETTO RISTRUTTURAZIONE DEL

FABBRICATO RURALE


NUMERO E TIPO DI N. 2 SAGGI ESPLORATIVI

INDAGINE N. 3 PROVE


PENETROMETRICHE

DINAMICHE

DATA INDAGINE DICEMBRE 2007

RISULTATI PROVE SAGGIO S1

SAGGIO S2

RISULTATI PROVE DL 1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DL-30 (60°) 06/12/2007 5.80 mt

Profondità (m)	Nr. Colpi	Calcolo coeff, riduzione sonda Chi	Res, dinamica ridotta (Kg/cm²)	Res, dinamica (Kg/cm²)	Pres. annuissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.10	17	0.807	15.11	18.73	0.76	0.94
0.20	7	0.855	6.59	7.71	0.33	0.35
0.30	4	0.853	3.76	4.41	0.19	0.23
0,40	3	0.851	2.81	3,30	0.14	0.1
0.50	7	0,849	6.55	7.71	0.33	0.39
0.60	11	0.847	10.26	12.12	0.51	0.6
0.70	11	0.845	10.24	12.12	0.51	0.63
0.80	12	0.843	11.15	13.22	0.56	0.66
0.90	10	0,842	9,14	10.86	0.46	0.54
1.00	23	0,740	18.47	24.97	. 0,92	1.25
1.10	24 25	0.738 0.736	19.23 19.98	26.06 27.14	0.96 1.00	1.30
1.30	28	0.735	22.33	30,40	1.12	1.36
1.40	21	0.733	16.71	22,80	0,84	1.14
1,50	24	0.731	19.05	26.06	0.95	1.30
1.60	21	0.730	16.63	22.80	0.83	1.14
1.70	31	0.678	22.82	33.66	1.14	1.68
1.80	28	0.726	22.08	30.40	1.10	1.52
1.90	26	0.725	20,17	27.82	1,01	1.39
2.00	28	0.723	21.67	29.96	1.08	1.50
2.10	27	0.722	20.85	28.89	1.04	1,44
2.20	25	0.720	19.27	26.75	0.96	1.34
2.30	22	0.719	16.92	23.54	0.85	1.18
2.40	23	0.717	17.65	24.61	0.88	1.23
2,50	23	0.716	17.62	24.61	0.88	1.23
2.60	23	0,714	17.58	24.61	0.88	1,23
2.70	22	0.713	16,78	23.54	0.84	1.18
2,80	24	0,711	18,27	25,68	0.91	1.28
2.90	24	0.710	17.98	25,32	0.90	1.27
3.00	26	0.709	19.44	27.43	0.97	1.37
3.10	24	0.707	17.91	25,32	0.90	1.27
3.20	25	0.706	18.62	26.38	0.93	1.32
3.30 3.40	26 26	0.705	19.33	27.43 27.43	0.97	1.37
3.40	25	0.703 0.702	19.30 18,52		0.96	1,37
3.60	23	0.701	17.75	26.38 25.32	0.93	1.32 1.27
3,70	26	0.700	19.19	27.43	0.96	1.27
3,80	25	0.698	18.42	26,38	0.92	1,32
3.90	25	0.697	18.14	26.01	0.91	1.30
4.00	26	0.696	18.83	27.05	0.94	1.35
4,10	26	0.695	18.80	27.05	0.94	1.35
4,20	27	0.694	19.49	28,09	0.97	1.40
4,30	28	0.693	20,18	29,13	1.01	1.46
4.40	28	0.691	20.14	29.13	1.01	1.46
4,50	27	0.690	19.39	28.09	0.97	1.40
4,60	28	0,689	20.08	29.13	1.00	1.46
4.70	31	0.638	20,58	32.25	1.03	1.61
4.80	30	0,687	21.45	31.21	1,07	1.56
4.90 5,00	30 29	0.686 0.685	21.12 20.39	30.79 29.76	1.06	1.54 / 1.49

D	mamic	probing	2005
_	THE PARTIES	HIAMILIA	

5.10	31	0.634	20.17	31.81	1.01	1,59
5.20	32	0.633	20.79	32.84	1.04	1.64
5.30	32	0,632	20.75	32.84	1.04	1,64
5,40	30	0.681	20,97	30,79	1.05	1.54
5.50	32	0.630	20.69	32.84	1.03	1,64
5.60	30	0.679	20.91	30.79	1.05	1,54
5.70	30	0.678	20.88	30.79	1.04	1,54
5.80	30	0,677	20.85	30,79	1.04	1,54

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato (m)	Correlazione	Cu (Kg/cm²)
Strato 1	7.13	0.90	Terzaghi-Peck	0.45
Strato 2	19.76	4.60	Terzaghi-Peck	1.33
Strato 3	23.94	5,80	Terzaghi-Peck	1,62

Modulo Edometrico

	Nspt	Prof. Strato (m)	Correlazione	Eed (Kg/cm²)
Strato 1	7.13	0.90	Stroud e Butler (1975)	32.71
Strato 2	19.76	4.60	Stroud e Butler (1975)	90.66
Strato 3	23.94	5,80	Stroud e Butler (1975)	109.84

Modulo di Young

	Nspt	Prof. Strato (m)	Согтевагіопе	Ey (Kg/cm²)
Strato I	7.13	0.90	Apollonia	71,30
Strato 2	19.76	4.60	Apollonia	197.60
Strato 3	23.94	5.80	Apollonia -	239,40

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	7.13	0.90	Classificaz, A.G.I. (1977)	MODERAT CONSISTENTE
Strato 2	19.76	4,60	Classificaz, A.G.I. (1977)	MOLTO CONSISTENTE
Strato 3	23.94	5,80	Classificaz. A.G.1. (1977)	MOLTO CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato (m)	Correlazione	Peso unità di volume (t/m³)
Strato 1	7.13	0.90	Meyerhof ed altri	. 1.86
Strato 2	19.76	4,60	Meyerhof ed altri	2.10
Strato 3	23,94	5.80	Meyerhof ed altri	2.11,

DL 2

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DL-30 (60°) 06/12/2007 5.80 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Otandesi (Kg/cm²)
0.10	I	0.857	0.94	1.10		0.06
0.20	7	0,855	6.59	7.71	0.33	0.39
0.30	9 5.	0.853	8.45	9.91	0,42	0.50
0.40	5	0.851	4.69	5,51	0.23	0.28
0.50	4	0.849	3.74	4,41	0.19	0.22
0,60	9	0.847	8.40	9.91	0.42	0.50
0.70	12	0.845	11,17	13.22	0.56	0.66
0.80	11	0.843	10.22	12.12	0.51	0.61
0.90	10	0,842	9.14	10.86		0.54
1.00	12	0.840	10.94	13.03	0.55	0.65
1,10	12	0.838	10.92	13.03	0.55	0,65
1.20	13	0.786	11.10	14.11	0.55	0,71
1.30	20	0.785	17.03	21.71	0.85	1.09
1.40	18	0.783	15,30	19.54	0.76	0.98
1.50	21	0.731	16.67	22.80	0.83	1,14
1.60	17	0.780	14,39	18.46	0.72	0.92
1.70	18	0.778	15.20	19.54		0.98
1.80	20	0.776	16.86	21.71	0.84	1,09
1,90	20	0.775	16.58	21.40	0.83	1.07
2.00	20	0.773	16,55	21.40	0.83	1.07
2.10	19	0.772	15.69	20.33	0.78	1.02
2.20	23	0.720	17,72	24.61	0.89	1,23
2.30	21	0.719	16.15	22,47	0,81	1,12
2.40	17	0.767	13.96	18.19	0.70	0.91
2.50	22	0.716	16,85	23.54	0.84	1.18
2.60	23	0.714	17.58	24.61	0.88	1.23
2.70	23	0,713	17.55	24.61	0.88	1.23
2,80	23	0.711	17.51	24.61	0.88	1,23
2.90	22	0.710	16.48	23,21	0.82	1, 1 6
3.00	24	0.709	17.95	25.32	0.90	1.27
3.10	24	0.707	17.91	25.32	0.90	1.27
3.20	26	0.706	19.37	27.43	0,97	1.37
3.30	24	0.705	17,84	25.32	0.89	1.27
3.40	25	0.703	18.55	26,38	0.93	1.32
3,50	26	0.702	19.26	27.43	0.96	1.37
3.60	26	0.701	19.23	27.43	0.96	1.37
3.70	25	0.700	18.45	26.38	0.92	1,32
3.80	24	0,698	17.69	25.32	0.88	1.32 1.27
3.90	26	0.697	18,86	27.05	0,94	1.35
4,00	25	0,696	18.10	26.01	0,91	1.30
4.10	25	0.695	18.07	26.01	0.90	1,30
4.20	27	0.694	19.49	28.09	0.97	1.40
4.30	26	0.693	18.74	27,05	0.94	1.35
4.40	25	0.691	17.99	26.01	0.90	1.30

4.50	24	0.690	17,24	24.97	0.86	1.25
4,60	24	0.689	17.21	24,97	0.86	1.25
4.70	26	0.688	18.62	27.05	0.93	1.35
4.80	26	0.687	18.59	27.05	0.93	1.35
4.90	28	0.686	19.71	28.73	0.99	1.44
5.00	28	0.685	19.68	28.73	0.98	1.44
5.10	26	0.684	18.25	26.68	0.91	1.33
5.20	25	0.683	17.52	25.66	0.88	1.28
5,30	24	0,682	16,80	24.63	0.84	1.23
5.40	28	0.681	19.57	28.73	0.98	1.44
5.50	26	0.680	18.15	26.68	0.91	1.33
5.60	28	0.679	19.51	28,73	0.98	1,44
5,70	27	0.678	18.79	27.71	0.94	1.39
5.80	27	0.677	18.77:	27.71	0.94	1.39

STIMA PARAMETRI GEOTECNICI PROVA Nr.2

TERRENI COESIVI

Coesione non drenata

	Nspt .	Prof. Strato (m)	Correlazione -	Cu (Kg/cm²)
Strato 1	6.85	1,20	Terzaghi-Peck	0.43
Strato 2	18.59	5.80	Terzaghi-Peck	1.26

Modulo Edometrico

, F	Nspt	Prof. Strato (m)	Correlazione	Eed (Kg/cm²)	
Strato 1	6,85	1.20	Stroud e Butler (1975)	31.43	
Strato 2	18.59	5.80	Stroud e Butler (1975)	85,29	

Modulo di Young

	Nspt	Prof. Strato (m)	Correlazione	Ey (Kg/cm²)	
Strato 1	6.85	1.20	Apollonia	68.50	
Strato 2	18.59	5.80	Apollonia	185.90	

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	6.85	1.20	Classificaz, A.G.I. (1977)	MODERAT. CONSISTENTE
Strato 2	18.59	5.80	Classificaz, A.G.I. (1977)	MOLTO CONSISTENTE

Peso unità di volume

	Nspt	Nspt Prof. Strato (m)		Peso unità di volume (t/m²)	
Strato I	6.85	1,20	Meyerhof ed altri	1.85	
Strato 2	18.59	5.80	Meyerhof ed altri	2.09	

DL 3

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DL-30 (60°) 06/12/2007 5.80 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.10	10	0.857	9.44	11,02	0.47	0.55
0.20	13	0.805	11.52	14.32	0.58	0.72
0.30	13	0,803	11.50	14.32	0.57	0.72
0.40	15	0.801	13.23	16.52	0.66	0.83
0.50	22	0.749	18.15	24.24	0.91	1.21
0,60	18	0.797	15.80	19,83	0.79	0.99
0.70	13	0.795	11.39	14.32	0.57	0.72
0.80	14	0.793	12,24	15.42	. 0,61.	0.77
0.90	16	0.792	13.75	17.37	0,69	0.87
1.00	15	0,790	12.86	16.28	0.64	0.81
1.10	20	0.788	17.11	21.71	0.86	1.09
1.20	23	0.736	18.38	24.97	0.92	1.25
1.30	. 18	0.785	15.33	19.54	0.77	0.98
1.40	20	0.783	17.00	21.71	0.85	1.09
1.50	15	0.781	12.72	16.28	0,64	0,81
1.60	20	0,780	16.93	21.71	0.85	1.09
1.70	20	0.778	16.89	21,71	0.84	1,09
1.80	21	0,726	16.56	22.80	0.83	1.14
1.90	23	0.725	17.84	24.61	0.89	1.23
2.00	22	0.723	17.03	23,54	0.85	1.18
2,10	22	0.722	16,99	23.54	0.85	1.18
2.20	22	0.720	16.95	23.54	0.85	1.18
2.30	20	0.769	16.45	21.40	0.82	1,07
2.40	22	0,717	16.88	23,54	0.84	1,18
2.50	18	0,766	14.75	19.26	0.74	0.96
2.60	20	0.764	16.36	21.40	0.82	1.07
2.70	21	0.713	16.02	22.47	0.80	1,12
2.80	24	0,711	18.27	25.68	0.91	1.28
2.90	22	0.710	16.48	23.21	0.82	1.16
3.00	23	0.709	17.20	24.27	0.86	1.21
3,10 3,20	22	0,707	16.42	23.21	0.82	1,16
3.30	24	0.706 0.705	17.88	25.32 25.32	0.89	1.27
3.40	25	0.703	17,84 18,55	25.32	0,89 0,93	1.27
3,50	23	0.702	17.04	24.27	0.85	1.32
3,60	22,	0.701	16.27	23.21	0.81	1.21
3.70	25	0.700	18.45			1.10
3.80	24	0.700	17,69	26,38 25,32	0.92 0.88	1.32
3.90	26	0.697	18.86	27.05	0.94	1.35
4.00	25	0.696	18.10	26.01	0,94	1.33
4.10	25	0.695	18.07	26.01	0.90	1.30
4.20	27	0.694	19.49	28.09	0.97	1.40
4.30	26	0.693	18.74	27.05	0.94	1,40
4.40	25	0.691	17.99	26.01	0.90	J.30

4,50	24	0.690	17.24	24.97	0.86	1.25
4.60	24	0.689	17.21	24.97	0.86	1.25
4.70	26	0.688	18.62	27.05	0.93	1,35
4.80	26	0.687	18.59	27.05	0.93	1.35
4,90	28	0.686	19.71	28.73	0.99	1.44
5,00	28	0.685	19,68	28.73	0.98	1.44
5.10	26	0.684	18.25	26.68	0.91	1.33
5.20	25	0.683	17.52	25.66	0.88	1.28
5.30	24	0.682	16.80	24.63	0.84	1.23
5.40	28	0.681	19.57	28.73	0.98	1.44
5,50	26	0.680	18.15	26.68	0.91	1.33
5.60	0	0.779	18.15	26.68	0.91	1.33
5.70	0	0.778	18.15	26,68	0.91	1.33
5,80	0	0.777	18.15	26.68	0.91	1.33

STIMA PARAMETRI GEOTECNICI PROVA Nr.3

TERRENI COESIVI
Cocsione non drenata

	Nspt	Prof. Strato (m)	Correlazione	Cu (Kg/cm²)	
Strato 1	11.67	1.00	Terzaghi-Peck	0.79	
Strato 2	17.03	5.80	Terzaghi-Peck	1.15	

Modulo Edometrico

	Nspt	Prof. Strato (m)	Correlazione	Eed (Kg/cm²)	
Strato 1	11.67	1.00	Stroud e Butler (1975)	53.54	
Strato 2	17.03	5,80	Stroud e Butler (1975)	78.13	

Modulo di Young

	Nspt	Prof. Strato (m)	Correlazione	Ey (Kg/cm²)	
Strato 1	11,67	1,00	Apollonia	116.70	
Strato 2	17,03	5.80	Apollonia	170.30	

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	11.67	1.00	Classificaz. A.G.I. (1977)	CONSISTENTE
Strato 2	17.03	5.80	Classificaz. A.G.I. (1977)	MOLTO CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato (m)	Correlazione	Peso unità di volume (t/m³)	
Strato 1	11.67	1.00	Meyerhof ed altri	2,01	
Strato 2	17.03	5.80	Meyerhof ed altri	2.08	

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 155 RT

RIFERIMENTO PRATICA PDC N. 24 DEL 2012

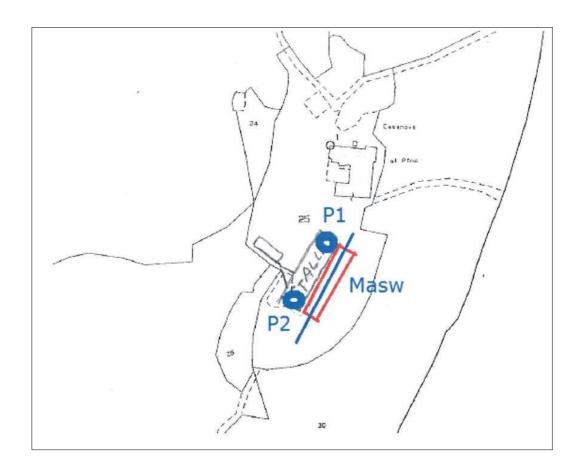
EDILIZIA

LOCALITÀ CASANUOVA AL PINO

SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE

PREFABBRICATO USO


STALLA OVINI

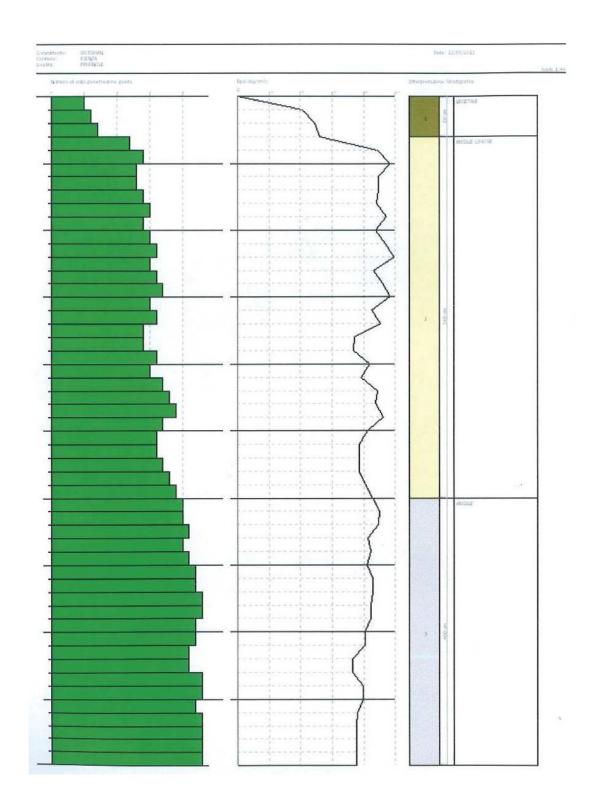
NUMERO E TIPO DI N. 2 PROVE

INDAGINE PENETROMETRICHE

DINAMICHE N. 1 MASW

DATA INDAGINE MARZO 2012

RISULTATI PROVE DPSH 1

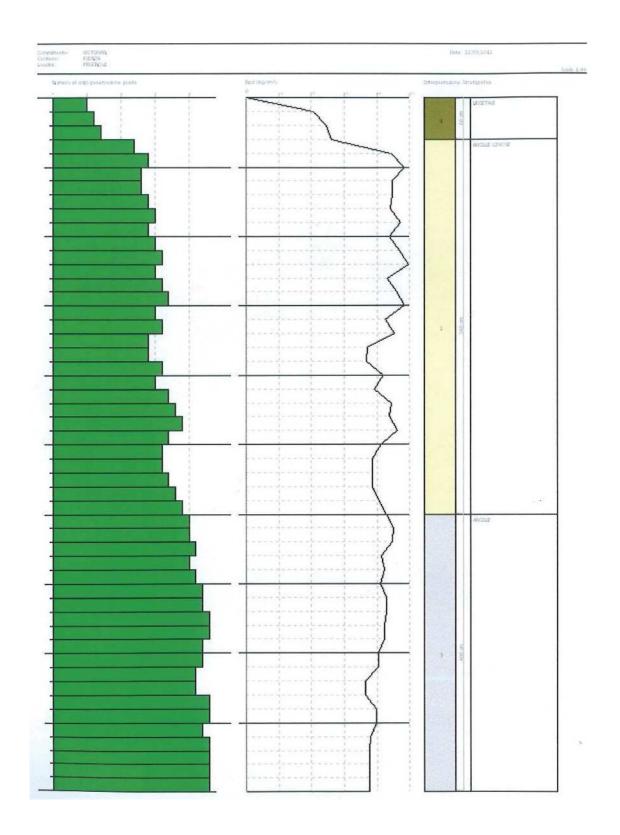

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 22/03/2012 10,00 mt

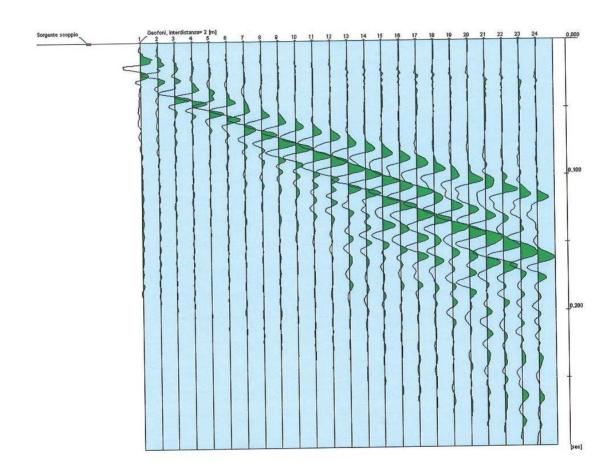
Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	5	0,855	44,90	52,54	2,24	2,63
0,40	6	0,851	53,64	63,04		3,15
0,60	7	0,847	57,18	67,50	2,86	3,38
0,80	12	0,843	97,59	115,72	4,88	5,79
1,00	14	0,790	106,62	135,01	5,33	6,75
1,20	13	0,786	98,57	125,36		6,27
1,40	13	0,783	98,14	125,36		6,27
1,60	14	0,780	97,25	124,75	4,86	6,24
1,80	15	0,776	103,77	133,66		6,68
2,00	14	0,773	96,46	124,75		6,24
2,20	15	0,770	102,94	133,66		6,68
2,40	16	0,767	109,37	142,57		7,13
2,60	15	0,764	94,94	124,23		6,21
2,80	16		100,89	132,51		6,63
3,00	17	0,759	106,81	140,79		7,04
3,20	15		93,91	124,23	4,70	6,21
3,40	16		99,83			6,63
3,60	14		81,32	108,30		5,41
3,80	14		81,05		4,05	5,41
4,00	16		92,33			6,19
4,20	15		86,29	116,03		5,80
4,40	17		97,50		4,88	6,58
4,60	18		96,56	130,62		6,53
4,80	19		101,63		5,08	6,89
5,00	17					6,17
5,20	16					5,81
5,40	16		84,88			5,81
5,60	17					5,81
5,80	18					6,15
6,00	19					6,49
6,20	20					6,83
6,40	20					6,78
6,60	21		90,91		4,55	
6,80	20					6,46 6,78
7,00	21					7,10
7,20	22					7,10
7,40	22					7,10
7,60	23					7,04
7,80	23				- And Administration	6,73
8,00	22					6,73
8,20 8,40	22					6,43

8,60	21	0,656	80,14	122,16	4,01	6,11
8,80	23	0,655	87,60	133,80	4,38	6,69
9,00	23	0,653	87,44	133,80	4,37	6,69
9,20	22	0,652	83,48	127,98	4,17	6,40
9,40	23	0,651	87,12	133,80	4,36	6,69 6,37
9,60	23	0,650	82,85	127,48	4,14	6,37
9,80	23	0,649	82,71	127,48	4,14	6,37
10,00	23	0,648	82,57	127,48	4,13	6,37


DPSH 2

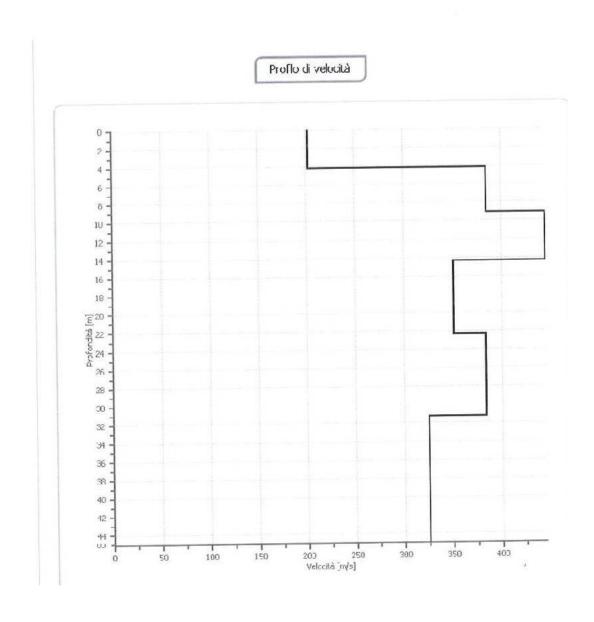
PROVA ... Nr.2


Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 22/03/2012 10,00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda Chi	ridotta (Kg/cm²)	(Kg/cm²)	ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	ammissibile Herminier - Olandesi (Kg/cm²)
0,20	7	0,855	62,86	73,55	3,14	3,68
0,40	6	0,851	53,64	63,04	2,68	3,15
0,60	5	0,847	40,84	48,22	2,04	2,41
0,80	7	0,843	56,93	67,50	2,85	3,38
1,00	12	0,840	97,18	115,72	4,86	5,79
1,20	13	0,786	98,57	125,36	4,93	6,27
1,40 1,60	14 13	0,783 0,780	105,69 90,30	135,01 115,84	5,28 4,52	6,75 5,79
1,80	15	0,780	103,77	133,66	5,19	6,68
2,00	15	0,773	103,77	133,66	5,17	6,68
2,20	14	0,770	96,07	124,75	4,80	6,24
2,40	15	0,767	102,54	133,66	5,13	6,68
2,60	16	0,764	101,27	132,51	5,06	6,63
2,80	15	0,761	94,59	124,23	4,73	6,21
3,00	16	0,759	100,53	132,51	5,03	6,63
3,20	15	0,756	93,91	124,23	4,70	6,21
3,40	15	0,753	93,59	124,23	4,68	6,21
3,60	16	0,751	92,93	. 123,77	4,65	6,19
3,80	14	0,748	81,05	108,30	4,05	5,41
4,00	15	0,746	86,56	116,03	4,33	5,80
4,20	15	0,744	86,29	116,03	4,31	5,80
4,40	16	0,741	91,77	123,77	4,59	6,19
4,60	17	0,739	91,20	123,37	4,56	6,17
4,80	18	0,737	96,28	130,62	4,81	6,53
5,00	17	0,735	90,68	123,37	4,53	6,17
5,20	18	0,733	95,75	130,62	4,79	6,53
5,40	18	0,731	95,49	130,62	4,77	6,53
5,60	17	0,729	84,71	116,18	4,24 4,72	5,81 6,49
5,80 6,00	19 21	0,727 0,675	94,44 96,94	129,85 143,52	4,72	7,18
6,20	23	0,674	105,90	157,18	5,29	7,86
6,40	23	0,672	96,45	143,52	4,82	7,18
6,60	23	0,670	99,57	148,53	4,98	7,43
6,80	22	0,669	95,01	142,07	4,75	7,10
7,00	22	0,667	94,79	142,07	4,74	7,10
7,20	23	0,666	98,87	148,53	4,94	7,43
7,40	23	0,664	98,65	148,53	4,93	7,43
7,60	24	0,663	97,35	146,90	4,87	7,35
7,80	25	0,661	101,19	153,02	5,06	7,65
8,00	24	0,660	96,94	146,90	4,85	7,35
8,20	23	0,659	92,71	140,78	4,64	7,04
8,40	24	0,657	96,55	146,90	4,83	7,35
8,60	25	0,656	95,40	145,43	4,77	7,27
8,80	25	0,655	95,22	145,43	4,76	7,27
9,00	23	0,653	87,44	133,80	4,37	6,69
9,20	24	0,652	91,07	139,62	4,55	6,98
9,40	25	0,651	94,69	145,43	4,73	7,27
9,60	25	0,650	90,06	138,56	4,50	6,93
9,80	26	0,649	93,50	144,10	4,67	7,21
10,00	26	0,648	93,34	144,10	4,67	7,21


MASW


Analisi spettrale

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Veloctà minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

n.	Frequenza	va di dispersione Velocità	Modo
1000	[Hz]	[m/sec]	
1	1,9	100,0	(
2	4,8	217,9	(
3	7,6	291,4	
4	10,4	322,3	(
4 5	13,3	325,6	(
6	16,1	313,2	(
7	18,9	293,9	(
8	21,8	274,1	
9	24,6	257,8	(
10	27,4	246,9	
11	30,3	241,6	J.
12	33,1	240,9	
13	35,9	242,8	
14	38,8	244,8	
15	41,6	244,9	W.
16	44,4	241,3	
17	47,3	233,7	
18	50,1	223,5	1
19	52,9	214,7	
20	55,8	214,4	N N

			I	nversione		
n.	Profondit à [m]	Peso saturo per unità di volume [kg/mc]	Poisson	Falda	Vp [m/sec]	Vs [m/sec]
1	4,18		0,2	No	329,2	201,6
2	9,09		0,2	No	629,5	385,5
3	14,33		0,2	No	728,0	445,8
4	22,33		0,2	No	574,3	351,7
5	31,33		0,2	No	626,7	383,7
6	00	10000	0,2	No	530,9	325,1

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 156 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 3119 DEL

EDILIZIA 22/03/2002

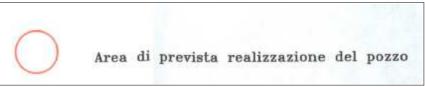
PRATICA N. 03/07

LOCALITÀ PODERE FONTELUCO

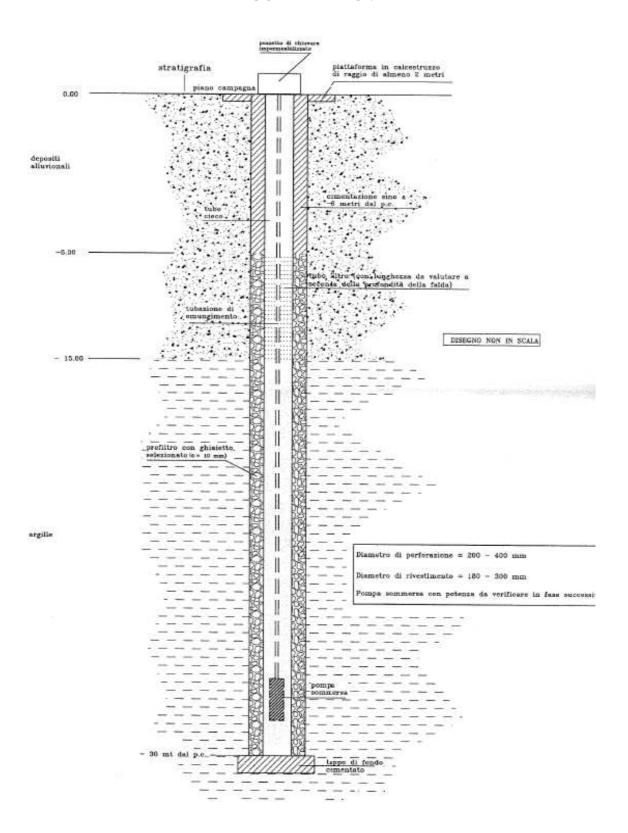
SERRE DI RAPOLANO

PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA


ACQUA AD USO DOMESTICO

NUMERO E TIPO DI N.1 PERFORAZIONE PER


INDAGINE POZZO

DATA INDAGINE MARZO 2002

RISULTATI PROVE

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 157 RT

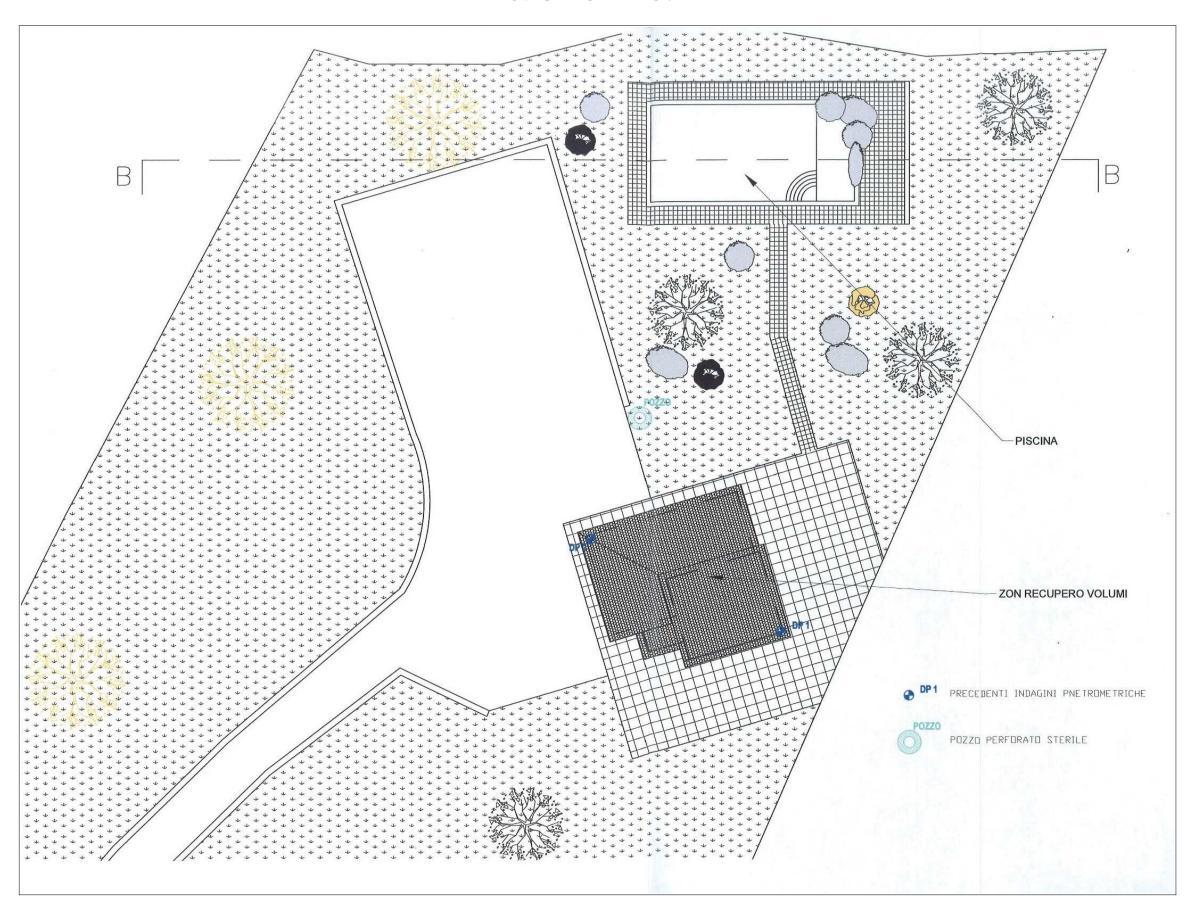
RIFERIMENTO PRATICA PDC N. 93 DEL 2011

EDILIZIA

LOCALITÀ RAPOLANO TERME

PROGETTO RECUPERO VOLUMI

> **TECNICI INTERRATI AD USO** GARAGE, REALIZZAZIONE DI UNA PISCINA E DI UN

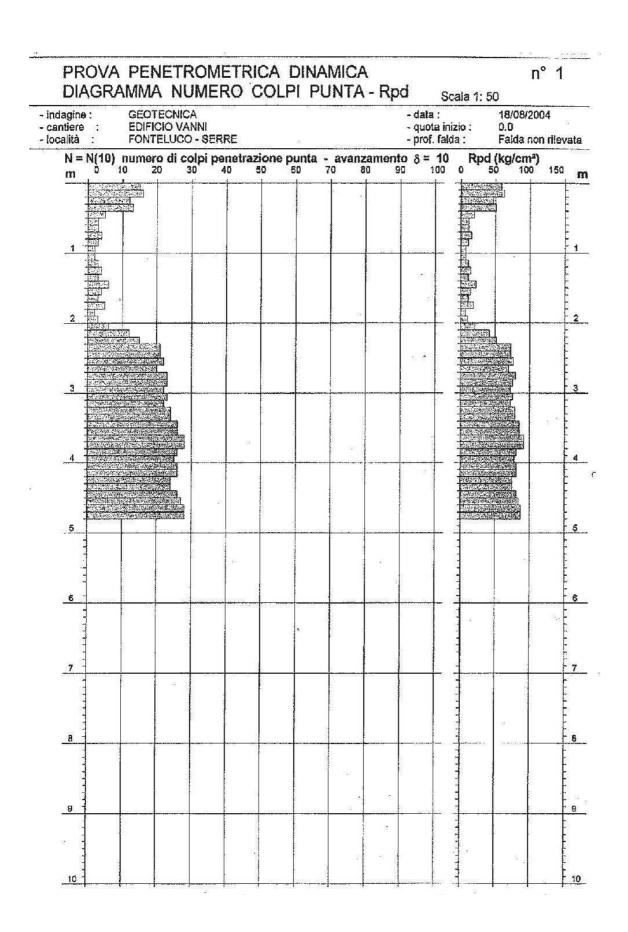

GAZEBO

NUMERO E TIPO DI N. 2 PROVE

> INDAGINE **PENETROMETRICHE**

> > DINAMICHE

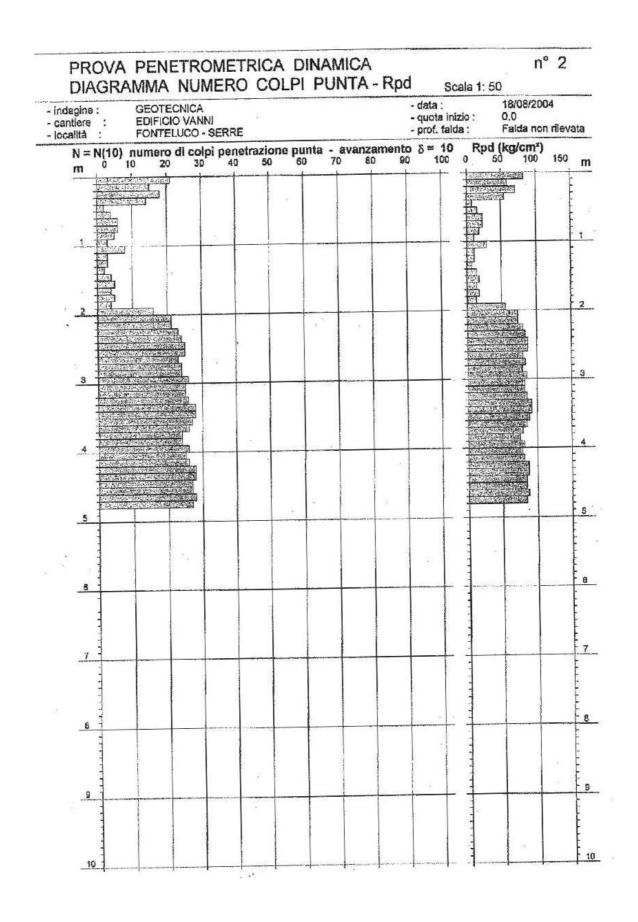
DATA INDAGINE NOVEMBRE 2011


RISULTATI PROVE DL 1

		VA PENET				+8	n° 1	
 indagine cantiere località note; 	: EDI	OTECNICA FICIO VANNI NTELUCO - SER	RE			ainizio; (falda: i	18/08/2004),0 Falda non rile 1	vata
Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r) ast	e Prof.(m)	N(colpi p)	Rpd(kg/cm	²) N(colpi r)	asta
0,00 - 0,10 0,10 - 0,20 0,20 - 0,30 0,30 - 0,40 0,40 - 0,50 0,60 - 0,70 0,70 - 0,80 0,90 - 1,00 1,00 - 1,10 1,10 - 1,20 1,20 - 1,30 1,30 - 1,40 1,50 - 1,60 1,50 - 1,60 1,70 - 1,80 1,80 - 1,90 1,90 - 2,00 2,10 - 2,20 2,20 - 2,30 2,30 - 2,40	15612353343223436435236251	58,7 62,6 47,0 50,9 19,6 11,7 11,7 15,7 11,0 7,3 7,3 11,0 14,7 11,0 22,0 14,7 11,0 18,4 6,9 10,4 20,8 41,5 51,9 72,7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,40 - 2,50 2,50 - 2,60 2,60 - 2,70 2,70 - 2,80 2,80 - 2,90 2,90 - 3,00 3,10 - 3,20 3,20 - 3,30 3,30 - 3,40 3,40 - 3,50 3,50 - 3,60 3,60 - 3,70 3,70 - 3,80 3,80 - 3,90 3,90 - 4,00 4,10 - 4,10 4,10 - 4,20 4,20 - 4,30 4,30 - 4,40 4,40 - 4,50 4,60 - 4,70 4,70 - 4,80	22 20 23 23 22 23 22 24 24 26 28 28 26 25 26 25 26 24 24 24 26 27	72,7 76,2 69,2 79,6 75,3 72,0 75,3 72,0 78,5 85,1 85,1 81,6 80,7 74,5 80,7 74,5 80,7 80,7 80,7 80,7 80,7 80,7 80,7 80,9		33334444444445555555555
	e.	×	*	5.	8		. E	17
	'n						8:	

⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

- M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mr


- Numero Colpi Punta N = N(10) [8 = 10 cm] - Uso rivestimento / fanghi iniezione : NO

DL 2

- indagine - cantlere - località - note :	: EDII	TECNICA FICIO VANNI ITELUCO - SER	RE					a inizio : falda :	18/08/2004 0.0 Falda non fileva 1	ata
Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/cr	n²) N(colpir) a	ast
1,00 - 0,10 1,10 - 0,20 1,20 - 0,30 1,30 - 0,40 1,40 - 0,50 1,50 - 0,60 1,60 - 0,70 1,70 - 0,80 1,90 - 1,00 1,00 - 1,10 1,10 - 1,20 1,20 - 1,30 1,30 - 1,40 1,50 - 1,60 1,60 - 1,70 1,70 - 1,80 1,80 - 1,90 1,90 - 2,00 1,90 - 2,10 1,00 - 2,10 1,00 - 2,10 1,00 - 2,10 1,00 - 2,40	21 15 18 14 24 66 53 83 32 45 46 16 21 23 24	82,2 58,7 70,4 54,8 7,8 15,7 23,5 18,4 11,0 11,0 7,3 14,7 18,4 13,8 55,4 72,7 79,8 83,1		1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2,40 - 2,50 - 2,70 - 2,80 - 2,90 - 3,00 - 3,20 - 3,30 - 3,30 - 3,50 - 3,50 - 3,50 - 4,00 - 4,10 - 4,20 - 4,30 - 4,50 - 4,50 - 4,50 - 4,70 -	2,60 2,70 2,80 2,90 3,10 3,10 3,20 3,40 3,50 3,50 3,70 3,80 4,10 4,20 4,40 4,40 4,50 4,70	25 25 23 24 24 26 25 25 26 28 27 28 24 24 26 25 26 28 27 28 27 28 27 27 28 27 27 27 28 27	86,5 86,5 79,6 83,1 78,5 85,1 81,8 85,1 91,6 85,4 85,4 74,5 80,7 86,9 86,9 83,8 86,9 83,8		333344444444455555555555
		a	a a					t		
10								£		

⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)
- M (masse battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm³ - D(diam. punta)= 35,70 m
- Numero Colpi Punta N = N(10) [5 = 10 cm] - Uso rivestimento / fanghi inlezione : NO

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 158 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ SERRE DI RAPOLANO

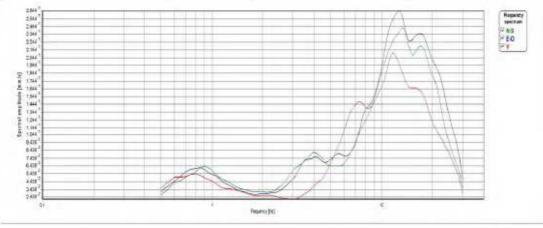
PROGETTO NUOVE INDAGINI A

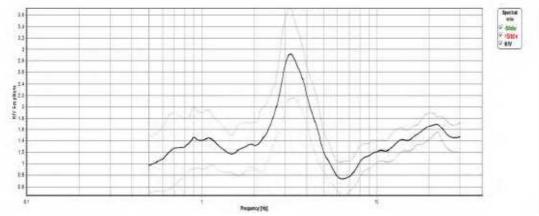
SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR

INDAGINE

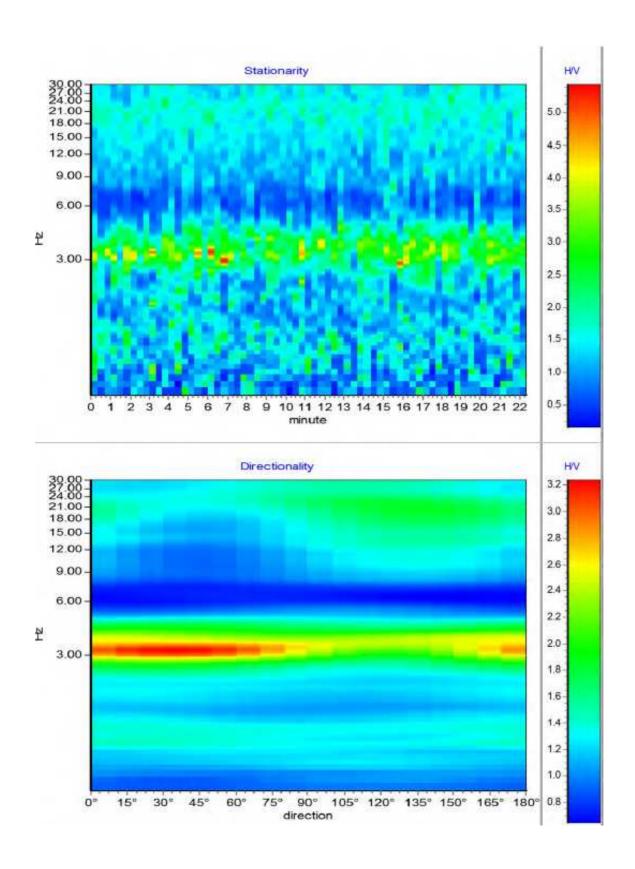

DATA INDAGINE AGOSTO 2020



RISULTATI PROVE

Analysis parameters					
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 18:14:25		
Automatic spike removal:	No	Stop recordings:	20/08/2020 18:49:25		
LTA [s]:	5.0	High pass frequency [Hz]:	0.50		
STA [s]:	0.5	Low pass frequency [Hz]:	30.00		
Ratio:	1.9	Nw number of windows:	67		
Lw Windows [s]:	20	Recording length [s]:	2100		
Overlap Windows s]:	0.0	Discarded windows:	38		
Konno-Ohmachi parameter:	40		100		

Analysis results					
H∕V peak frequency fø [Hz]:	3.361	Standard deviation [Hz]:	0.372		



	Criteria for a reliable H/V curve	
fø > 10/Lw	3.36 >= 0.50	Yes
Nc(fø) > 200	4504.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 101</td><td>Yes</td></f<2fø<>	exceeded 0 out of 101	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.850	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	4.750	Yes
Aø > 2	2.86 > 2.00	Yes
	Criteria for a stable H/V peak	
Fpeak[A(f)± sA(f)] = fø ± %	4.80% < 5.00%	Yes
sf < e(fø)	0.3716 > 0.1681	No
sA(fø) < ?(fø)	0.7017 < 1.5800	Yes

Lw Nw f	window length number of windows used in the analysis current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
Fpeak[A(f)± sA(f)] = fø ± %	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)								
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø			
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58			

