
COMUNE DI ASCIANO COMUNE DI RAPOLANO TERME

Provincia di Siena

PIANO STRUTTURALE INTERCOMUNALE

Legge Regionale 65/2014

Comune di Asciano

Fabrizio Nucci Sindaco

Comune di Rapolano Terme

Alessandro Starnini Sindaco

Responsabile del Procedimento

Rolando Valentini

Garante dell'informazione

Maria Alice Fiordiponti

Ufficio di Piano e Progettazione Urbanistica

Rolando Valentini - coordinamento

Leonardo Carta Laura Tavanti

Collaboratori

Gabriele Giardini Silvia Bertocci
Caterina Machetti Manuela Fontanive

Sauro Malentacchi Alessia Neri

Patrizia Sodi

Valutazione Ambientale Strategica

Annalisa Pirrello Lucia Ninno - collaboratore

Agricoltura, Foreste e Biodiversità

Elena Lanzi

Andrea Vatteroni - collaboratore

Indagini Geologico-Tecniche

Michele Sani - Terra & Opere srl Andrea Caselli - *collaboratore*

Indagini Idrologico-Idrauliche

Alessio Gabbrielli

Archeologia

Cristina Felici - Archeo Tech and Survey srl Francesco Brogi *- collaboratore*

Partecipazione e Comunicazione

Anna Lisa Pecoriello - MHC Progetto territorio Adalgisa Rubino - MHC Progetto territorio

Collaudatore dei dati

Luca Gentili - LdP progetti gis

Tomi dei dati di base Comune di Rapolano Terme

(PROVINCIA DI SIENA)

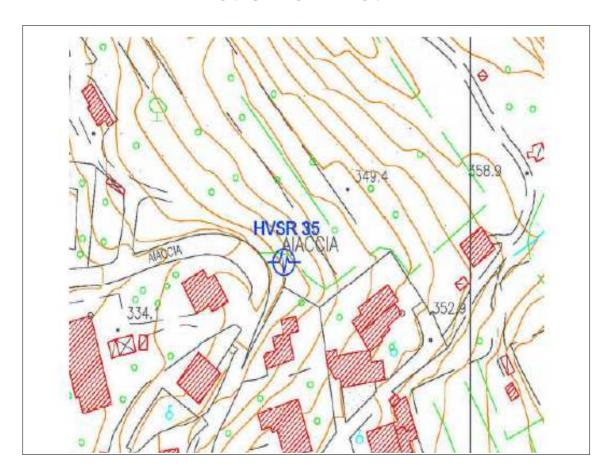
SCHEDA INDAGINE 189 RT

RIFERIMENTO PRATICA EDILIZIA

LOCALITÀ AIACCIA,

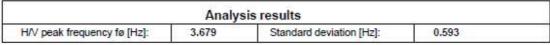
SERRE DI RAPOLANO

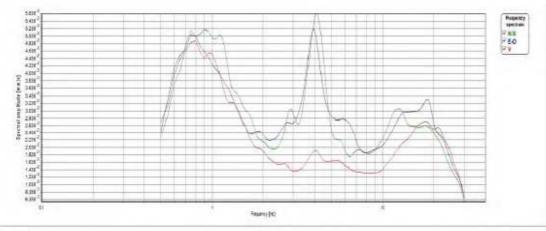
PROGETTO NUOVE INDAGINI A

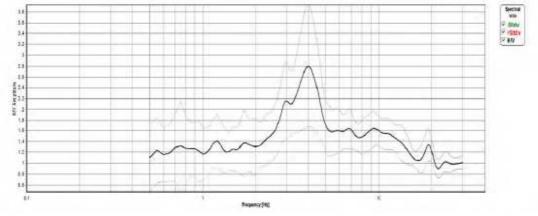

SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR

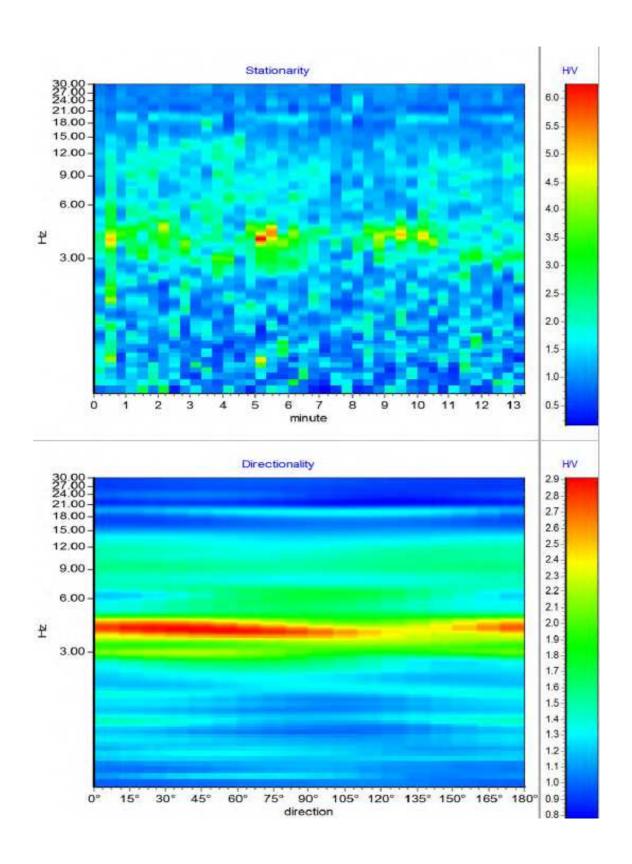

INDAGINE


DATA INDAGINE AGOSTO 2020



RISULTATI PROVE

	Analysi	s parameters	27
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 15:35:50
Automatic spike removal:	No	Stop recordings:	20/08/2020 16:05:50
LTA [s]:	5.0	High pass frequency [Hz]:	0.50
STA [s]:	0.5	Low pass frequency [Hz]:	30.00
Ratio:	1.9	Nw number of windows:	40
Lw Windows [s]:	20	Recording length [s]:	1800
Overlap Windows s]:	0.0	Discarded windows:	50
Konno-Ohmachi parameter:	40	16	



	Criteria for a reliable H/V curve	
fø > 10/Lw	3.68 >= 0.50	Yes
Nc(fø) > 200	2943.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 111</td><td>Yes</td></f<2fø<>	exceeded 0 out of 111	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.950	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	14.150	Yes
Aø > 2	2.62 > 2.00	Yes
	Criteria for a stable H/V peak	
Fpeak[A(f)± sA(f)] = fø ± %	8.73% > 5.00%	No
sf < e(fø)	0.5935 > 0.1839	No
sA(fø) < ?(fø)	0.9984 < 1.5800	Yes

Lw Nw	window length number of windows used in the analysis
ļ <u>.</u>	current frequency
fø	H/V peak frequency
sf	standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/√(f)	H/V curve amplitude at frequency f
Aø	H/√ peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
Fpeak[A(f)± sA(f)] = fø ± %	maximum deviation from the fø peak, expressed as a percentage

	Threshold values for sf and sA(fø)										
fø frequency range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0											
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø						
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58						

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 190 RT

5RIFERIMENTO PRATICA PDC N. 40 DEL 2010

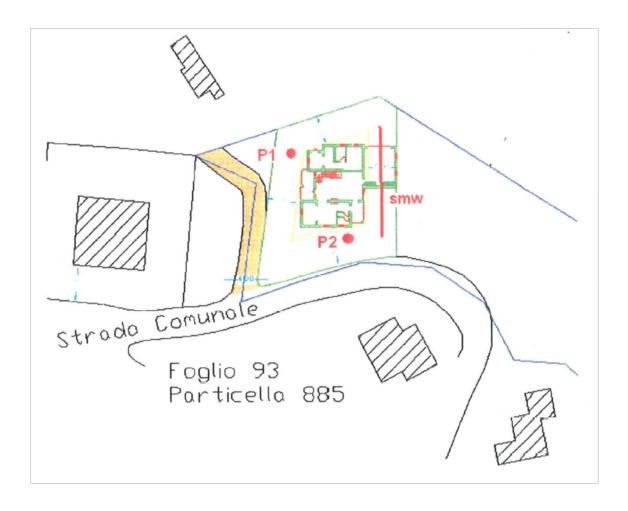
EDILIZIA

LOCALITÀ VIA AIACCIA,

SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE DI UN

FABBRICATO ABITATIVO

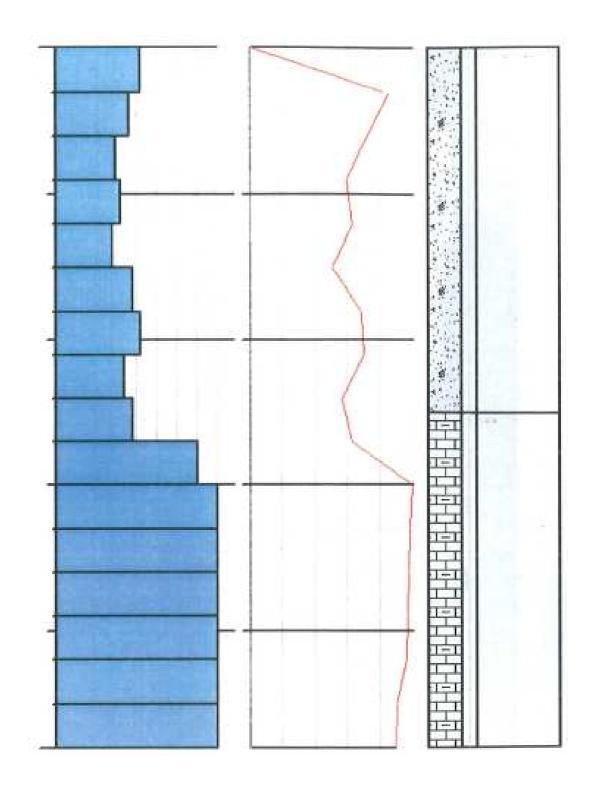

NUMERO E TIPO DI N. 2 PROVE

INDAGINE PENETROMETRICHE IN

FORO

N. 1 MASW

DATA INDAGINE APRILE 2010

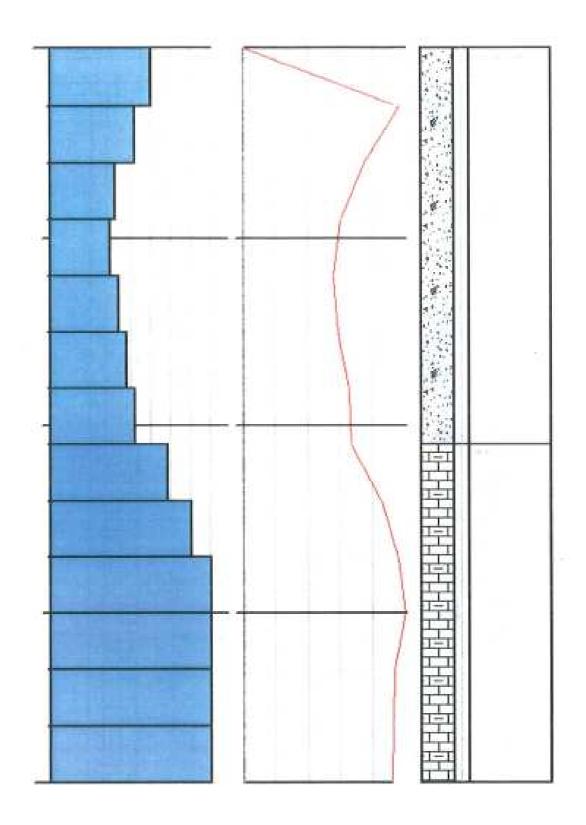


RISULTATI PROVE SPT 1

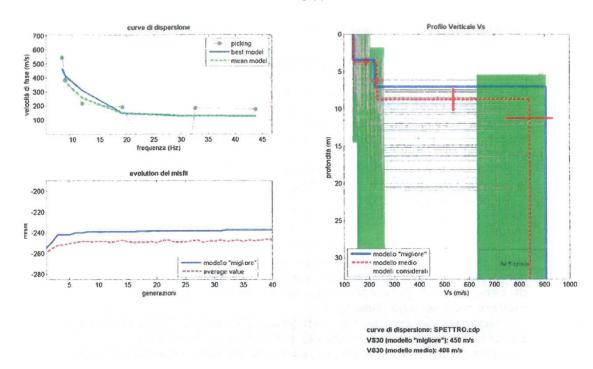
PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata SPT (Standard Penetration Tcst) 04/09/2009 4,80 mt

Profondità (m)	Nr. Colpi	Nr. Colpi Rivestimento	Calcolo coeff, riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres, ammissibile Herminier - Olandesi (Kg/em²)
0,30	21	0	0,753	109,54	145,53	5,48	7,28
0,60	18	Ó	0,797	91,94	115,35	4,60	5,77
0,90	15	0	0,792	76,09	96,13	3,80	4,81
1,20	16	0	0,786	80,62	102,53	4,03	5,13
1,50	14	0	0,781	65,18	83,44	3,26	4,17
1,80	19	0	0,776	87,91	113,24	4,40	5,66
2,10	21	Ö	0,722	90,32	125,16	4,52	6,26
2,40	17	r)	0,767	72,64	94,69	3,63	4,73
2,70	19	0	0,763	80,73	105,83	4,04	5,29
3,00	35	0	0,659	128,40	194,94	6,42	9,75
3,30	4()	0	0,605	134,72	222,79	6,74	11,14
3,60	40	0	0,601	125,65	209,11	6,28	10,46
3,90	40	0	0,597	124,88	209,11	6,24	10,46
4,20	40	0	(),594	124,15	209,11	6,21	10,46
4,50	40	0	0,590	116,30	197,01	5,82	9,85
4,80	40	0	0,587	115,67	197,01	5,78	9,85



SPT 2


PROVA ... Nr.2

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata SPT (Standard Penetration Test) 04/09/2009 3,90 mt

Profondità (m)	Nr. Colpi	Nr. Colpi Rivestimento	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,30	25	0	0,753	130,41	173,25	6,52	8,66
0,60	21	0	0,747	100,53	134,58	5,03	6,73
0,90	16	0	0,792	81,16	102,53	4,06	5,13
1,20	15	0	0,786	75,58	96,13	3,78	4,81
1,50	17	0:	0,781	79,15	101,32	3,96	5,07
1,80	19	0	0,776	87,91	113,24	4,40	5,66
2,10	21	0	0,722	90,32	125,16	4,52	6,26
2,40	29	0	0,717	115,84	161,52	5,79	8,08
2,70	35	0	0,663	129,21	194,94	6,46	9,75
3,00	40	0	0,609	135,61	222,79	6,78	11,14
3,30	40	0	0,605	134,72	222,79	6,74	11,14
3,60	40	0	0,601	125,65	209,11	6,28	10,46
3,90	40	0	0,597	124,88	209,11	6,24	10,46

MASW

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 191 RT

RIFERIMENTO PRATICA PDC N. 76 DEL 2011

EDILIZIA

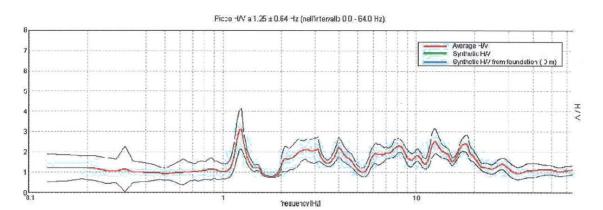
LOCALITÀ VIA AIACCIA,

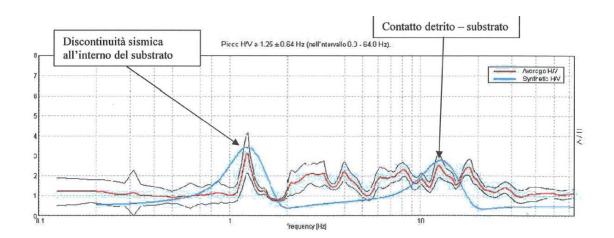
SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE DI UN

GARAGE-RIMESSA

ATTREZZI


NUMERO E TIPO DI N. 1 HVSR


INDAGINE

DATA INDAGINE OTTOBRE 2011

RISULTATI PROVE HVSR

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 192 RT

RIFERIMENTO PRATICA

EDILIZIA

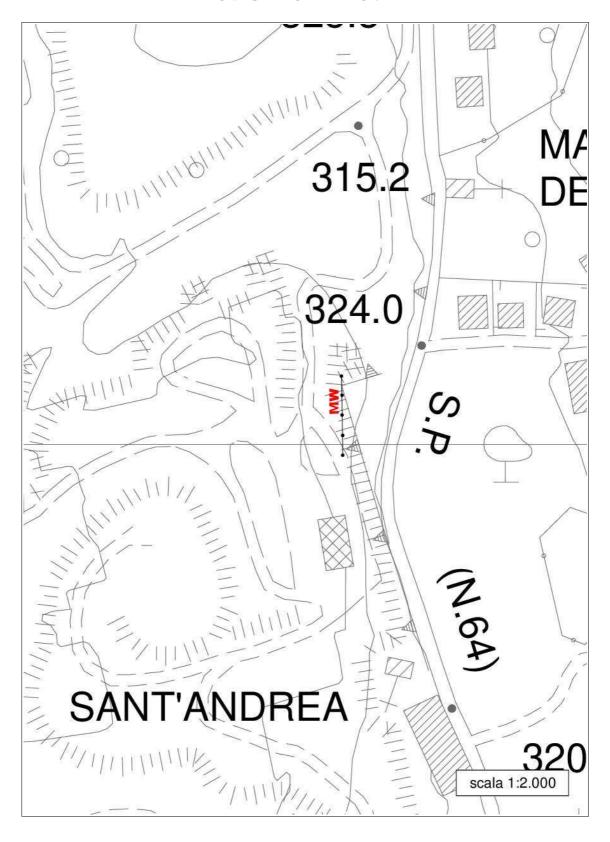
LOCALITÀ SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

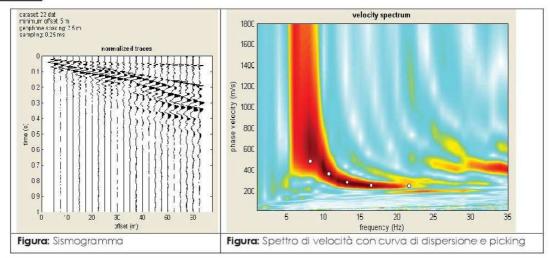
MICROZONAZIONE SISMICA

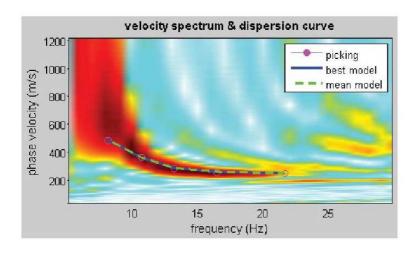
DI SECONDO LIVELLO


NUMERO E TIPO DI

INDAGINE

N.1 MASW


DATA INDAGINE NOVEMBRE - DICEMBRE


2020

RISULTATI PROVE

MASW O

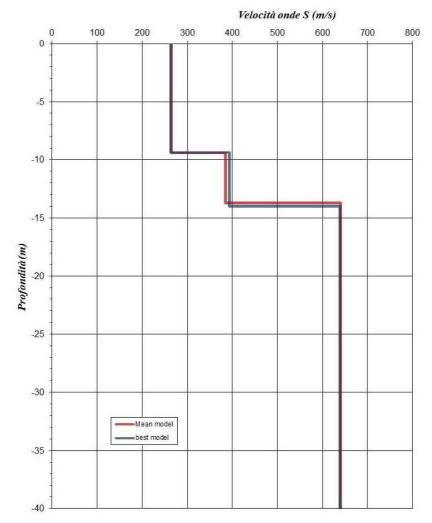


Figura: modello interpretativo

L'interpretazione della prova MASW, relativamente alle onde S, ha reso evidente le seguenti successioni:

		PROVA	MASW		
Best model Me					nodel
Profondi (n		Velocità Onde S (m/s)	Profondità da P.C (m)		Velocità Onde S (m/s)
0	9,4	264	0	9,4	264
9,4	14,0	393	9,4	13,7	385
14,0	40	638	13,7	40	640
	Vseq = 4:	15 m/s		Vseq = 4	16 m/s

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 193 RT

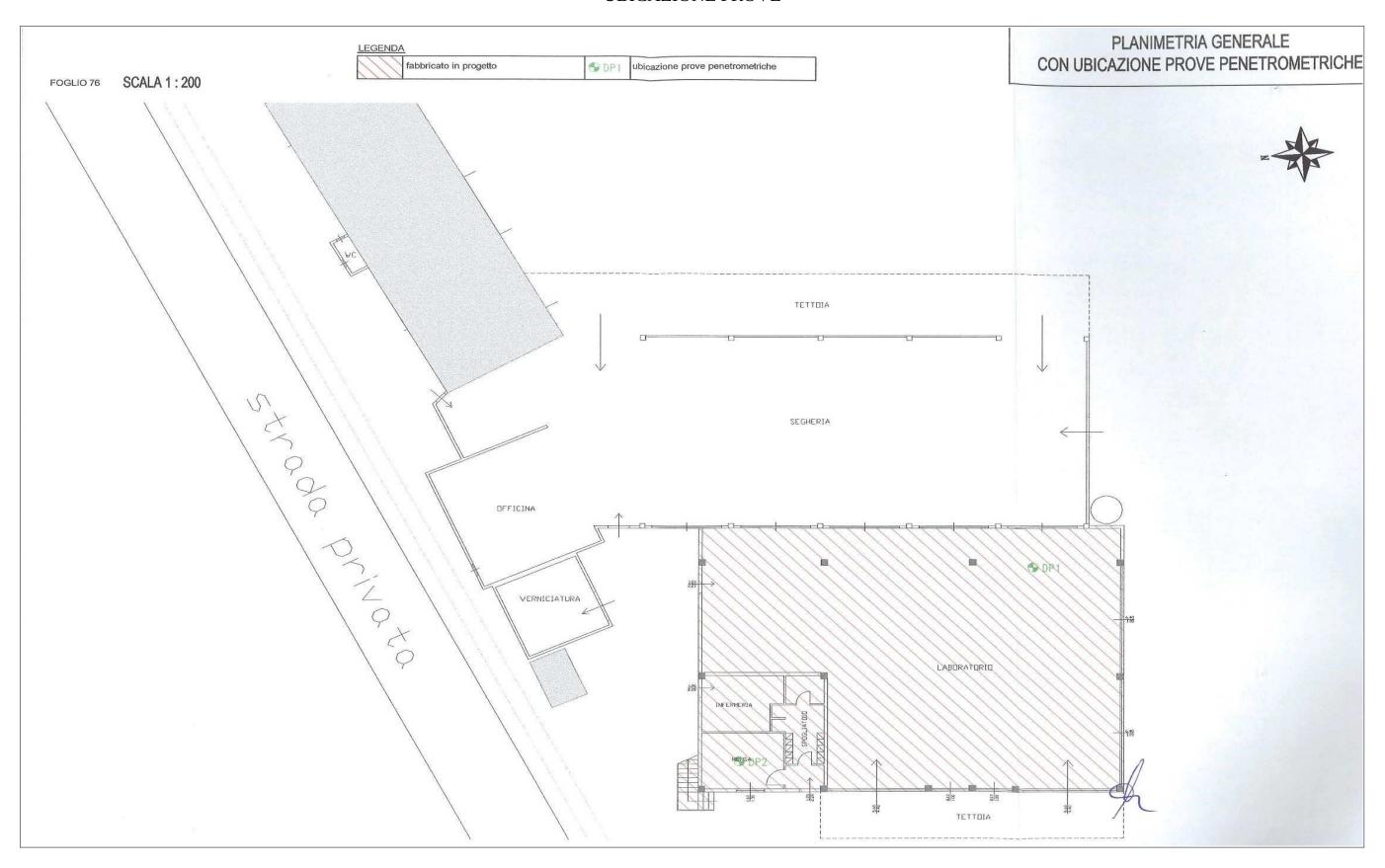
RIFERIMENTO PRATICA PDC N. 21 DEL 2007

EDILIZIA

LOCALITÀ VIA DI FONTELUCO,

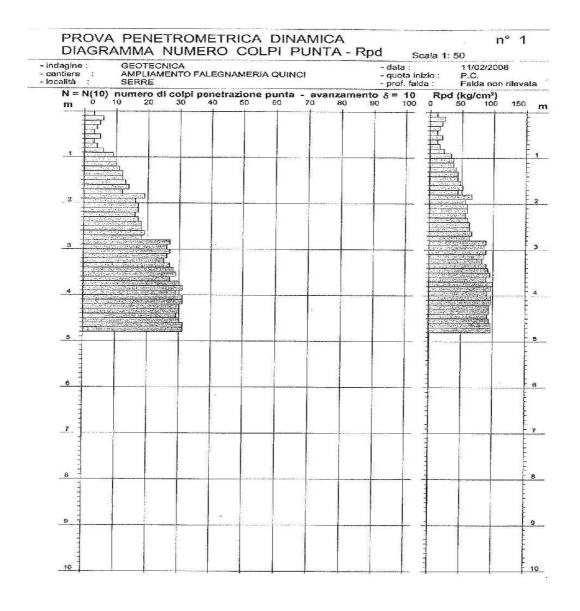
SERRE DI RAPOLANO

PROGETTO AMPLIAMENTO DI UNA

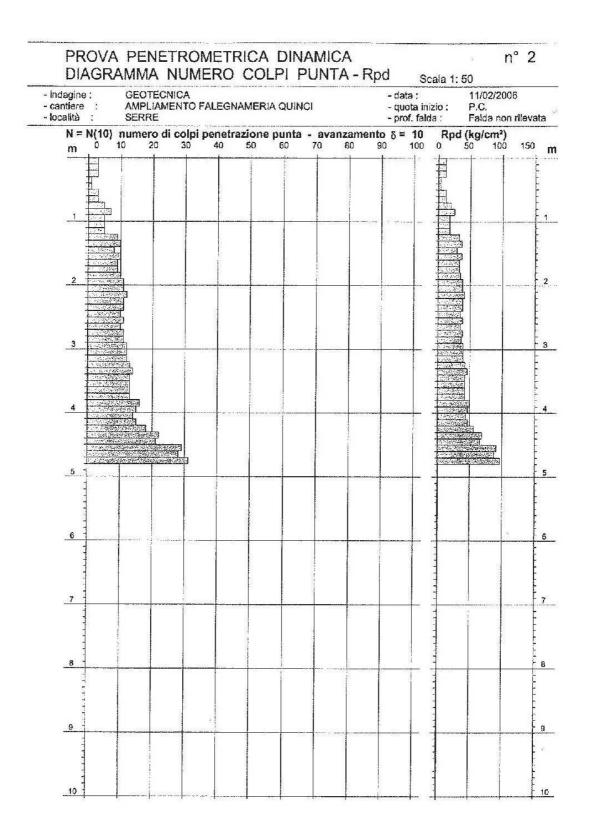

FALEGNAMERIA

NUMERO E TIPO DI N. 2 PROVE

INDAGINE PENETROMETRICHE


DINAMICHE

DATA INDAGINE FEBBRAIO 2006


RISULTATI PROVE DL 1

- Indagine : GEOTECNICA - cantiere : AMPLIAMENTO FALEGNAMERIA QUINCI - località : SERRE - note :						- data - quoti - prof. - pagir	inizio: P falda: F	1/02/2006 .C. alda non rilev	<i>r</i> ata		
Pro	if.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	'.(m)	N(colpí p)	Rpd(kg/cm	2) N(colpi r)	asta
0.00 -	0.10	3	11.8		1	2.40 -	2.50	18	62.6		3
0.10 -	0.20	6	23.5	(4	1	2.50 -	2.60	18	62.6	2000	3
0.20 -	0.30	5	19.6	***	1	2.60 -	2.70	19	66.0		3
0.30 -	0.40	4	15.7		1	2.70 -	2.80	18	62.6	81 2444	3
0.40 -	0.50	3 5	11.8		1	2.80 -	2.90	27	88.8	- Promise	4
0.50 -	0.60		19.6		1	2.90 -	3.00	26	85.5	W	4
0.60 -	0.70	3	11.8		1	3.00 -	3.10	27	88.8		4
0.70 -	0.80	4	15.7	-	1 .	3.10 -	3.20	26	85.5		4
- 08.0	0.90	6	22.1		2	3.20 -	3.30	25	82.2	*****	4
- 00.0	1.00	9	33.2	-	2	3.30 -	3.40	27	88.8		4
- 00.1	1.10	10	36.8		2	3.40 -	3,50	28	92.1	-	
1.10 -	1.20	10	36.8	-	2	3.50 -	3.60	29	95.4	-	4
1.20 -	1.30	11	40.5	****	2	3.60 -	3.70	27	88.8		4
1.30 -	1.40	12	44.2	-	2	3.70 -	3.80	30	98.7		4
1.40 -	1.50	12	44.2	-	2	3.80 -	3.90	31	96.8		5
1.50 -	1.60	13	47.9		2	3.90 -	4.00	29	90.5	-	5
- 06.1	1.70	14	51.6		2	4.00 -	4.10	31	96.8		5
1.70 -	1,80	12	44.2	4	2	4.10 -	4.20	31	96.8		5
- 08.1	1.90	19	66.0	*****	3	4.20 -	4.30	30	93.7	 -	5
1.90 -	2.00	16	55.6		3	4.30 -		30	93.7		5
- 00.5	2.10	17	59.1	W. W. S.	3	4.40 -		29	90.5		5
2.10 -	2.20	17	59.1	-	3	4.50 -	V41.045-151	30	93.7	****	4 4 5 5 5 5 5 5 5 5 5 5
2.20 -	2.30	16	55.6		3	4.60 -	135 110 110	31	96.8		5
- 08.5	2.40	17	59.1	-	3	4.70 -	4.80	31	96.8		5

DL 2

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA									n° 2	2
- indegine : GEOTECNICA - cantiere : AMPLIAMENTO FALEGNAMERIA QUINCI - località : SERRE - note :						2000	a inizio ; P. P. falda ; Fa	11/02/2006 P.C. Falda non rilevata		
Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/cm²	N(colpi r)	asta
0.00 - 0.10	3	11.8		1	2.40 -	2.50	10	34.8	-	3
0.10 - 0.20	3 3	11.8		1	2.50 -	2.60	11	38.2	0.	3
0.20 - 0.30	3	11.8		1	2.60 -	2.70	10	34.8	*****	3
0.40	1	3.9		1	2.70 -	2.80	11	38.2	-	3
0.50	1	3.9	-	1	2.80 -	2.90	11	36.2	-	4
0.50 - 0.60	3	11.8		1	2.90 -	3.00	12	39.5		4
0.60 - 0.70	3 3 5 7	11.8		1	3.00 -	3.10	12	39.5		4
0.80 - 0.80	5	19.6		1 1	3.10 -	3.20	12	39.5		4
0.80 - 0.90	7	25.8	-	2	3.20 -	3.30	13	42.8		4
0.90 - 1.00	5 5 5	18.4	****	2	3.30 -	3.40	14	45.1	-	4
1.00 - 1.10	5	18.4		2	3.40 -	3.50	13.	42.8		4
1.10 - 1.20		18.4		2	3.50 -	3.60	13	42.8		4
.20 - 1.30	9	33.2		2	3.60 -	3.70	13	42.8	-	4
.30 - 1.40	10	36.8	\$ 27	2	3.70 -	3.80	13	42.8	5 0	4
1.40 - 1.50	8	29.5		2	3.80 -	3.90	16	50.0		5 5 5
.50 - 1.60	10	36.8	****	2	3.90 -	4.00	15	46.8	-	5
1.60 - 1.70	9	33.2	- Harrison	2	4.00 -	4.10	14	43.7	13 	5
.70 - 1.80	9	33.2		2	4.10 -	4.20	15	46.8	-	5
.80 - 1.90	10	34.8	-	3	4.20 -	4.30	18	56.2	-	5
.90 - 2.00	11	38.2	******	3	4.30 -	4.40	22	68.7		5 5 5
2.00 - 2.10	11	38.2	-	3	4.40 -	4.50	21	65.6	4	5
2.10 - 2.20	12	41.7	M-4-800	3	4.50 -	4.60	29	90.5		5
2.20 - 2.30	11	38.2	200	3	4.60 -	4.70	28	87.4		5
2.30 - 2.40	11	38.2		3	4.70 -	4.80	31	96.8		5

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 194 RT

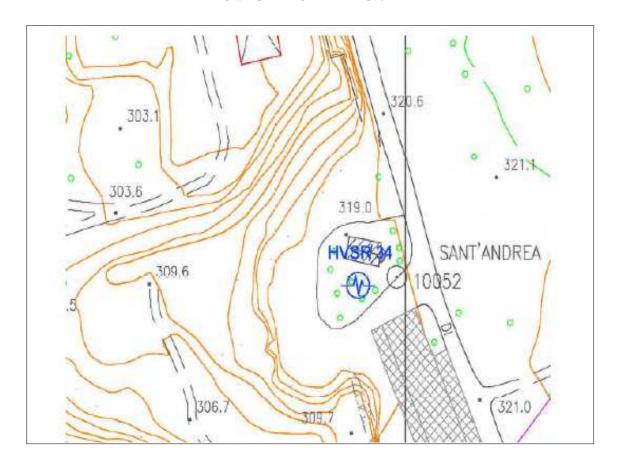
RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ SANT'ANDREA,

SERRE DI RAPOLANO

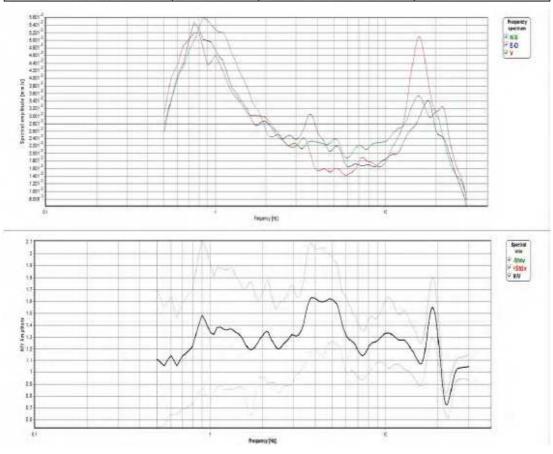
PROGETTO NUOVE INDAGINI A


SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

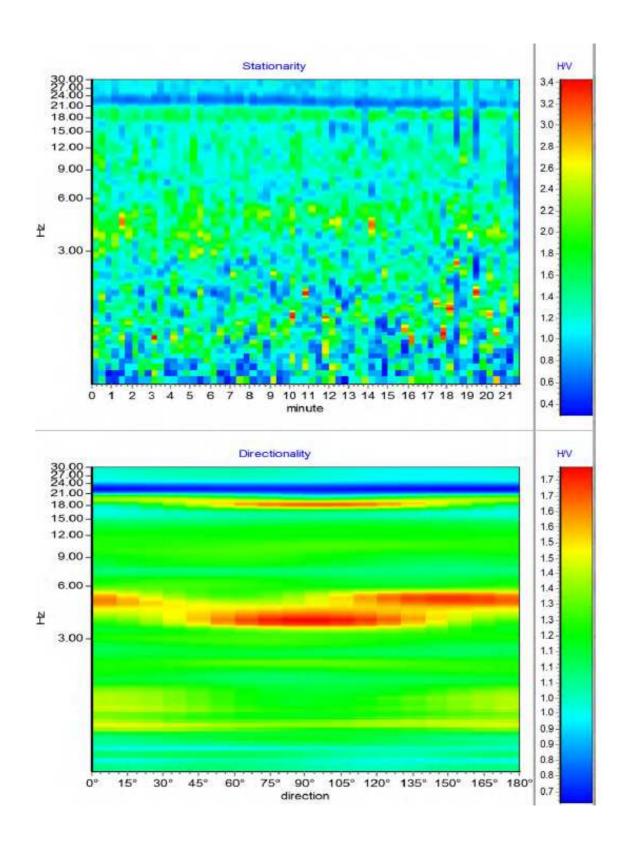
MICROZONAZIONE SISMICA

NUMERO E TIPO DI N.1 HVSR

INDAGINE


DATA INDAGINE AGOSTO 2020

RISULTATI PROVE


_	Analysi	is parameters	
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 16:52:04
Automatic spike removal:	No	Stop recordings:	20/08/2020 17:27:04
LTA [s];	5.0	High pass frequency [Hz]:	0.50
STA [s]:	0.5	Low pass frequency [Hz]:	30.00
Ratio:	1.9	Nw number of windows:	65
Lw Windows [s]:	20	Recording length [s]:	2100
Overlap Windows s]:	0.0	Discarded windows:	40
Konno-Ohmachi parameter:	40		

	Analys	sis results	200	
H/V peak frequency fø [Hz]:	2.375	Standard deviation [Hz]:	1.459	

	Criteria for a reliable H/V curve	
fø > 10/Lw	2.37 >= 0.50	Yes
Nc(fø) > 200	3087.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 71</td><td>Yes</td></f<2fø<>	exceeded 0 out of 71	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	Not exist	No
Exists f in [fø,4fø] where A(f) < Aø/2	Not exist	No
Aø > 2	1.23 < 2.00	No
	Criteria for a stable H/V peak	
Fpeak[A(f)± sA(f)] = fø ± %	681.18% > 5.00%	No
sf < e(fø)	1.4589 > 0.1187	No
sA(fø) < ?(fø)	0.3254 < 1.5800	Yes

Threshold values for sf and sA(fø)						
fø frequency range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0	
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø	
?(fø) for sA(fø)	3.0	2.5	2.0	1.78	1.58	

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 195 RT

RIFERIMENTO PRATICA

EDILIZIA

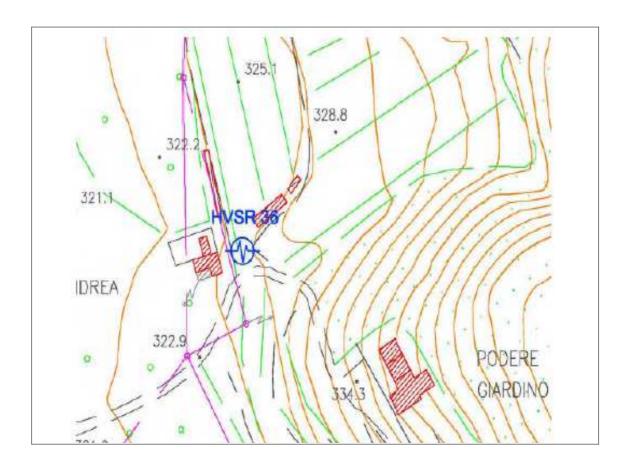
LOCALITÀ AIACCIA,

SERRE DI RAPOLANO

PROGETTO NUOVE INDAGINI A

SUPPORTO DELLA DOCUMENTAZIONE TECNICA PER LA

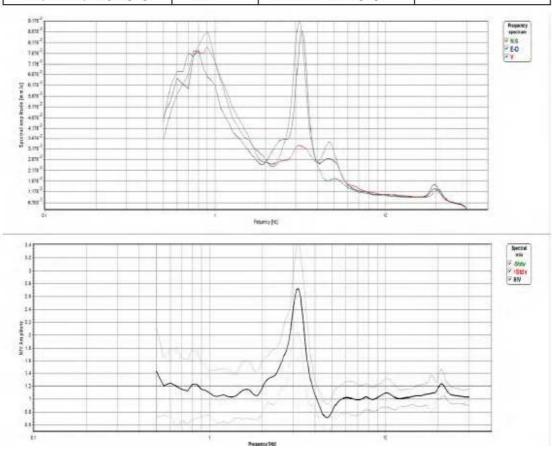
MICROZONAZIONE SISMICA


NUMERO E TIPO DI N.1 HVSR

INDAGINE

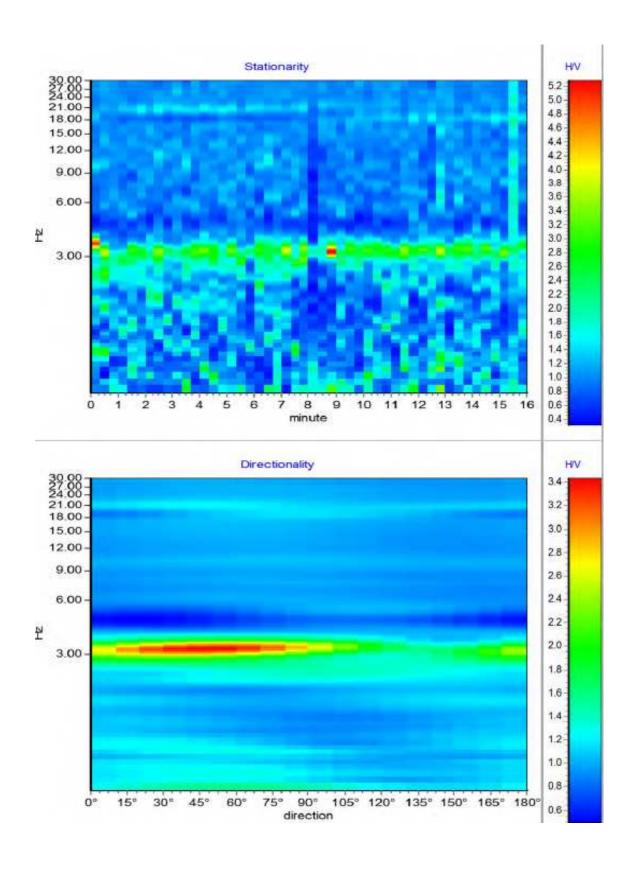
DATA INDAGINE AGOSTO 2020

NOTE -


UBICAZIONE PROVE

RISULTATI PROVE

Analysis parameters							
Sample frequency [Hz]:	250.00	Start recordings:	20/08/2020 16:12:21				
Automatic spike removal:	No	Stop recordings:	20/08/2020 16:47:21				
LTA [s]:	5.0	High pass frequency [Hz]:	0.50				
STA [s]:	0.5	Low pass frequency [Hz]:	30.00				
Ratio:	1.9	Nw number of windows:	48				
Lw Windows [s]:	20	Recording length [s]:	2100				
Overlap Windows s]:	0.0	Discarded windows:	57				
Konno-Ohmachi parameter:	40	33					


	Analys	is results		
H/V peak frequency fø [Hz]:	3.164	Standard deviation [Hz]:	0.146	

	Criteria for a reliable H/V curve	
fø > 10/Lw	3.16 >= 0.50	Yes
Nc(fø) > 200	3037.00 >= 200.00	Yes
sA(f)<2 for 0.5fø <f<2fø< td=""><td>exceeded 0 out of 95</td><td>Yes</td></f<2fø<>	exceeded 0 out of 95	Yes
	Criteria for a clear H/V peak	
Exists f in [fø/4,fø] where A(f) < Aø/2	0.800	Yes
Exists f in [fø,4fø] where A(f) < Aø/2	3.750	Yes
Aø > 2	2.71 > 2.00	Yes
	Criteria for a stable H/V peak	
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	1.15% < 5.00%	Yes
sf < e(fø)	0.1464 < 0.1582	Yes
sA(fø) < ?(fø)	0.6706 < 1.5800	Yes

Lw Nw f fø sf	window length number of windows used in the analysis current frequency H/V peak frequency standard deviation of H/V peak frequency
Nc = fø x Lw x Nw	number of significant cycles
AH/V(f) Aø	H/V curve amplitude at frequency f H/V peak amplitude at frequency fø
sA(f)	standard deviation of AH/V(f)
sA(fø)	standard deviation of AH/V(f) at fø frequency
e(fø)	threshold value for the stability condition sf < e(fø)
?(fø)	threshold value for the stability condition sA(fø) < ?(fø)
$Fpeak[A(f)\pm sA(f)] = fø \pm \%$	maximum deviation from the fø peak, expressed as a percentage

Threshold values for sf and sA(fø)								
fø frequency range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
e(fø) [Hz]	0.25fø	0.2fø	0.15fø	0.1fø	0.05fø			
?(fø) for sA(fø) 3.0 2.5 2.0 1.78 1.58								

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 196 RT

RIFERIMENTO PRATICA PDC N. 5 DEL 2019

EDILIZIA

LOCALITÀ PODERE GIARDINO,

SERRE DI RAPOLANO

PROGETTO COSTRUZIONE DI UNA

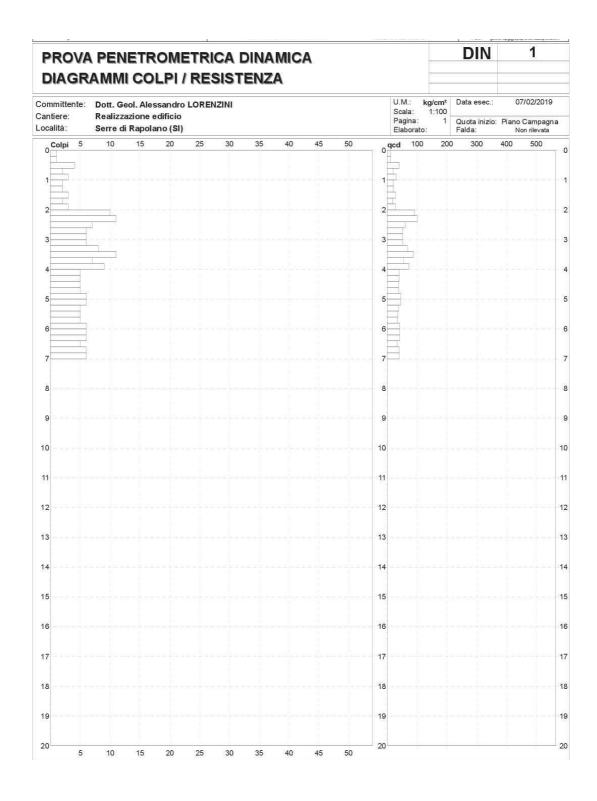
VILLETTA UNIFAMILIARE

NUMERO E TIPO DI N. 2 PROVE

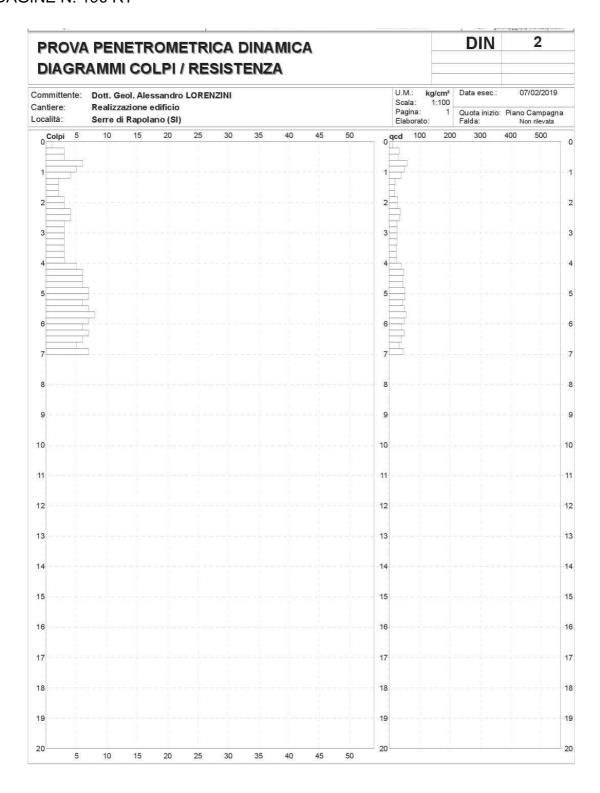
INDAGINE PENETROMETRICHE

DINAMICHE N. 1 MASW N. 1 HVSR

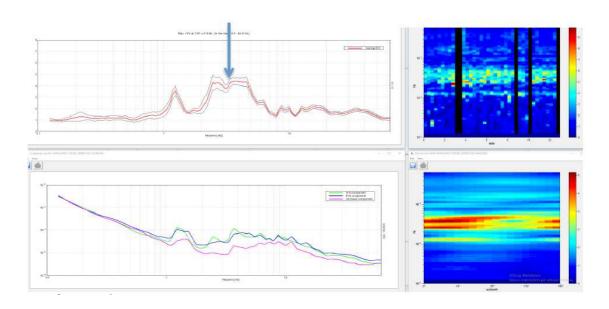
DATA INDAGINE FEBBRAIO 2019


NOTE -

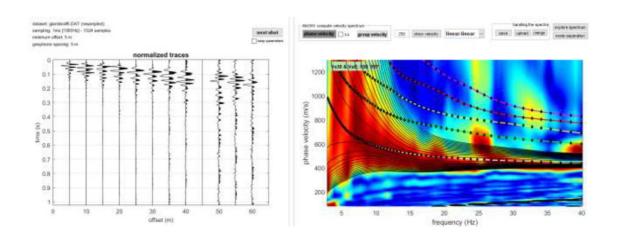
UBICAZIONE PROVE

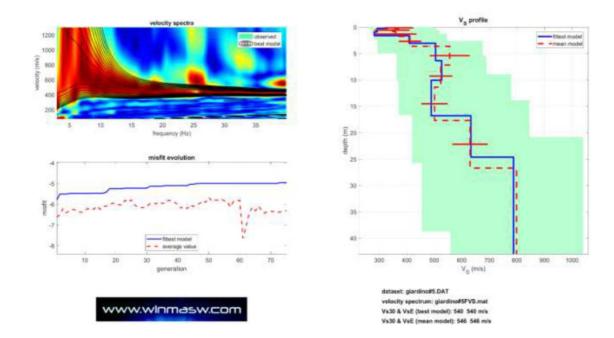

RISULTATI PROVE DPSH 1

	URE e: Do Re	E DI (. Alessa one edi apolano			ALE	U.I	VI.∷ kg	/cm²	Data esec.:	07/02/2019
ommittent antiere: ocalità: H m	e: Do Re Se	tt. Geol alizzazi rre di R	. Alessa one edi apolano	ndro LORENZINI ficio			1.U	vl∴ kg	/cm²	Data esec.:	07/02/2019
ocalità: H m	Se Asta	rre di R	apolano								
m		L1						gina : iborato :	1	Falda:	Non rilevata
1397731		n°	L2 n°	qcd kg/cm²	H	Asta n°	L1 n°	L2 n°		cd /cm²	
	- 4	2445	.01	2002	100	300	- 11		Kg/	TOTAL	
	1	1		10.7							
0.40	1	1		10.7							
0.60	1	4 2		39.4 19.7							
0.80	2 2	3		19.7							
1.00	2										
1.20	2	2		19.7							
1.40	2 3 3	2		19.7 27.3							
1.80	3	2		18.2							
2.00	3	3		27.3							
2.20	3	10		91.0							
2.40	3	11		100.1							
2.60	4	7		59.2							
2.80	4	6		50.8							
3.00	4	6		50.8							
3.20	4	6		50.8							
3.40	4	8		67.7							
3.60	5	11		86.9							
3.80	5	7		55.3							
4.00	5 5 5	9		71.1							
4.20	5	5		39.5							
4.40	5	5		39.5							
4.60	6	5		37.1							
4.80	6	5		37.1							
5.00	6	6		44.5							
5.20	6	6		44.5							
5.40	6	5		37.1							
5.60	7	5		34.9							
5.80	7	5		34.9							
6.00	7	6		41.9							
6.20	7	6		41.9							
6.40	7	6		41.9							
6.60	8	5		33.0							
6.80	8	6		39.6							
7.00	8	6		39.6							



DPSH 2


				METRICA DINA IPAGNA PUNTA		ALE		DIN	2
Committer	nte: Do	tt. Geol alizzazi	. Alessa one edi	ndro LORENZINI ficio			Pagina:	/cm² Data esec.:	07/02/2019
ocalità:	Se	rre di R	apolano	o (SI)			Elaborato:	Falda:	Non rilevata
H	Asta n°	L1 n°	L2 n°	qcd kg/cm²	H		L1 L2	qcd kg/cm²	
0.20	1	1	100.00	10.7		2440		ngrom	
0.40	1	3		32.2					
0.60	i	3		29.6					
0.80	2	6		59.1					
1.00	2	5		49.3					
1.20	2	4		39.4					
1.40	2	2		19.7					
1.60	3	2							
		2		18.2					
1.80	3	2 2 3		18.2					
2.00	3			27.3					
2.20	3	3		27.3					
2.40	3	4		36.4					
2.60	4	4		33.8					
2.80	4	3		25.4					
3.00	4	3		25.4					
3.20	4	3		25.4					
3.40	4	3		25.4					
3.60	5	3		23.7					
3.80	5	3		23.7					
4.00	5	3		23.7					
4.20	5	5		39.5					
4.40	5	6		47.4					
4.60	6	6		44.5					
4.80	6	6		44.5					
5.00	6	7		51.9					
5.20	6	7		51.9					
5.40	6	6		44.5					
5.60	7	7		48.9					
5.80	7			55.8					
		8 7							
6.00	7			48.9					
6.20	7	6		41.9					
6.40	7	7		48.9					
6.60	8	6		39.6					
6.80	8	5		33.0					
7.00	8	7		46.2					


HVSR

MASW

INDAGINE N. 196 RT

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 197 RT

RIFERIMENTO PRATICA PDC N. 8 DEL 2019

EDILIZIA

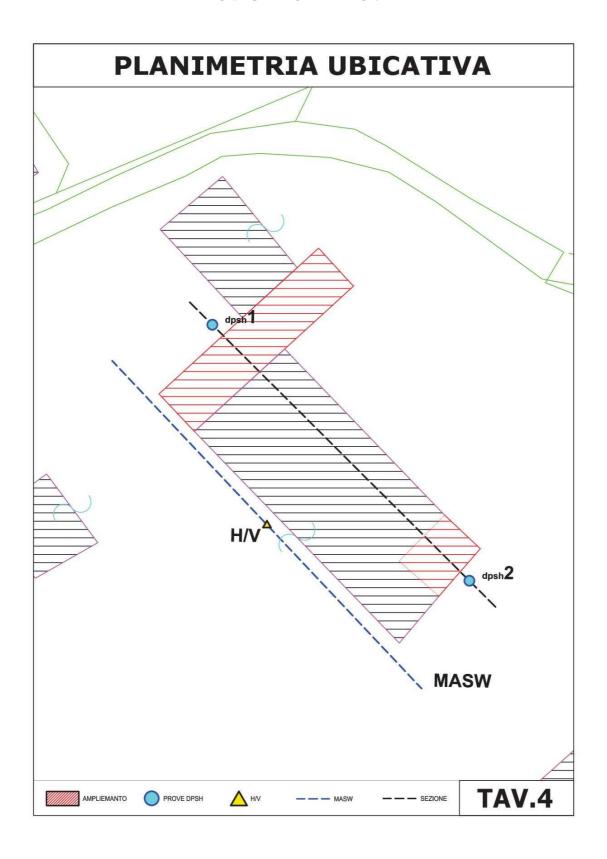
LOCALITÀ P. PARADISO

SERRE DI RAPOLANO,

PROGETTO AMPLIAMENTO DELLA

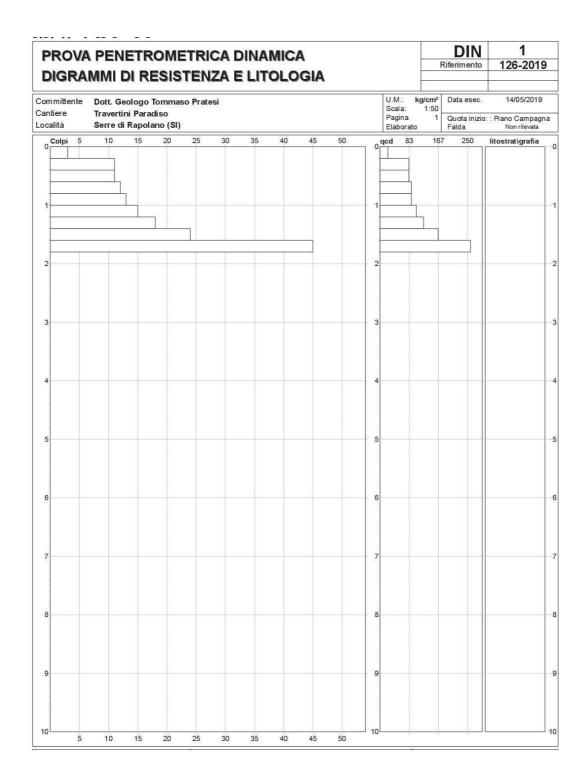
ZONA UFFICI

NUMERO E TIPO DI N. 2 PROVE


INDAGINE PENETROMETRICHE

DINAMICHE N. 1 MASW N. 1 HVSR

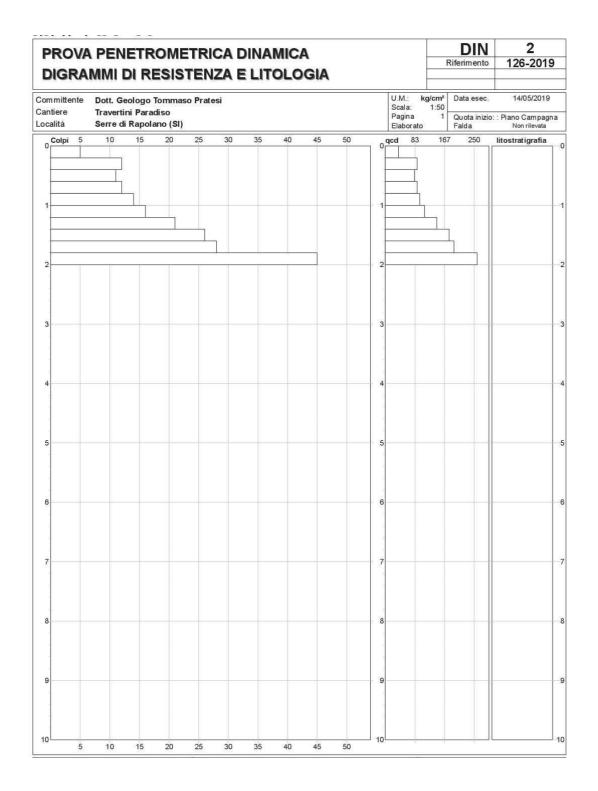
DATA INDAGINE MAGGIO 2019


NOTE -

UBICAZIONE PROVE

RISULTATI PROVE DPSH 1

PRO	VA P	ENE	TRO	METRIC	A DINAMICA						DIN Riferimento	1 126-2019
LET	TURE	CA	MPA	GNA E V	ALORI TRAS	SFO	RMAT	1			Mennento	120-2013
			- 1450	794 70 7 70	A C			188			1	
ommitter antiere			ogo Tor Paradis	nmaso Pratesi	ij					g/cm²	Data esec.	14/05/2019
ocalità Serre di Rapolano (SI)								Pagina Elaborato	1	Falda	Non rilevata	
H m	note n°	L1 n°	L2 n°	qcd kg/cm²		H m	note n°	L'	L2 n°	kg	qcd g/cm²	
0,20 0,40 0,60	1	3 11		22,3 81,9 81,9								
0,80 1,00	2	11 12 13		89,4 89,8								
1.20	2 2 2 2 2 3 3	15 18		103,6								
1,40 1,60 1,80	3	24 45		103,6 124,3 165,7 310,7								
1,00	3	-45		310,7								

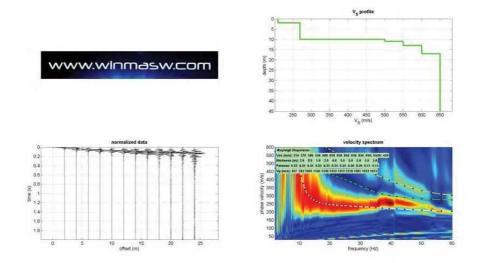

nota

1 DIN PROVA PENETROMETRICA DINAMICA 126-2019 Riferimento SUDDIVISIONE GEOTECNICA U.M.: kg/cm² Dott. Geologo Tommaso Pratesi Data esec 14/05/2019 Cantiere Travertini Paradiso Pagina Località Serre di Rapolano (SI) Falda Non rilevata PARAMETRI GENERALI G Q kg/cm² kg/cm² Nspt colpi profondità Vs m/sec natura descrizione colpi 22,3 20,1 78,2 72,6 200,2 180,2 43 1,12 110 3,91 248 10,01 Coes./Gran. Coes./Gran. Coes./Gran. 63 0,00:0,20 1,52 Media 1,52 1,52 112 169 NATURA COESIVA NATURA GRANULARE E' kg/cm² Ysat t/m³ Yd t/m³ profondità n Nspt Liq. kg/cm² kg/cm² kg/cm² 0,00:0,20 0,31 1,83 39,28 33 18 230 1,88 127 1,06 1,00 2,75 1,97 2,10 61 118 1,97 2,12 252 497

FON050

DPSH 2

						NAMIC RI TRA		RMAT	'n		ı	DIN Riferimento	2 126-2019
ommittente antiere ocalità	Dot Trav	t. Geold vertini l	1000 DEC	nmaso Pra		74114		XWEXT	U.I Pa	M.: kç gina aborato	/cm²	Data esec.	14/05/2019 Non rilevata
H no	ote	L1 n°	L2 n°	qcd kg/cm²			H	note n°	L1 n°	L2 n°	q	cd /cm²	
0.20 0.40 0.80 1.00 1.20 1.40 1.60 2.00	1 1 2 2 2 2 2 2 2 3 3 3	12 11 12 14 16 16 26 28 45		37.2 89.4 81.9 89.7 110.5 145.0 179.5 193.3 289.5									
					cd = Collabora								



nota:

2 DIN PROVA PENETROMETRICA DINAMICA Riferimento 126-2019 SUDDIVISIONE GEOTECNICA Committente U.M.: Data esec. 14/05/2019 Dott. Geologo Tommaso Pratesi Cantiere Travertini Paradiso Pagina Elaborato Località Serre di Rapolano (SI) Non rilevata PARAMETRI GENERALI profondità VCA colpi natura nº statistica descrizione Vs m/sec kg/cm² kg/cm² 37,2 92,9 220,8 33,5 87,2 205,1 63 1,86 132 4,64 274 11,04 0,00 : 0,20 0,20 : 1,40 1,40 : 2,00 69 1,52 Coes./Gran. Media Media 120 177 Coes./Gran. Coes./Gran. NATURA GRANULARE NATURA COESIVA E' kg/cm² Yd t/m³ profondità Cu Mo n° Nspt Liq. kg/cm² 1,46 1,59 1,85 253 1,91 0,00:0,20 0.50 1.87 34.98 41 28 0,94 161 0,20 : 1,40 1,40 : 2,00 1,25 3,13 24,71 20,20 0,67 69 130 1,99

FON050

MASW

Mean model

Thickness (m): 2.0, 8.0, 1.0, 2.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0

Density (gr/cm3) (approximate values): 1.84 1.91 2.06 2.09 2.11 2.13 2.13 2.10 2.07 2.06 2.06 Seismic/Dynamic Shear modulus (MPa) (approximate values): 81 140 516 631 759 899 899 888 874 869 869

Vs30 (m/s): 420

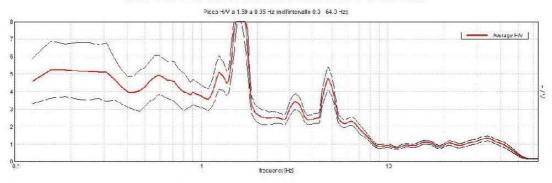
HVSR

Strumento: TRZ-0135/01-11

Formato dati: 16 byte Fondo scala [mV]: n.a.

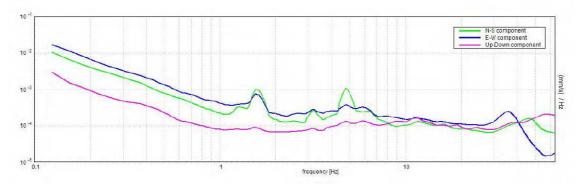
Inizio registrazione: 14/05/19 09:47:11 Fine registrazione: 14/05/19 10:01:11

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN


Dato GPS non disponibile

Durata registrazione: 0h14'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s


Tipo di lisciamento: Triangular window Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SERIE TEMPORALE H/V DIREZIONALITA' H/V 11 10 10 10 1

SPETTRI DELLE SINGOLE COMPONENTI

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 198 RT

RIFERIMENTO PRATICA

PDC N. 10 DEL 2016

EDILIZIA

LOCALITÀ SERRE DI RAPOLANO

PROGETTO AMPLIAMENTO CAPANNONE

PER LA REALIZZAZIONE DI

UN MAGAZZINO

NUMERO E TIPO DI INDAGINE

N. 1 SONDAGGIO A

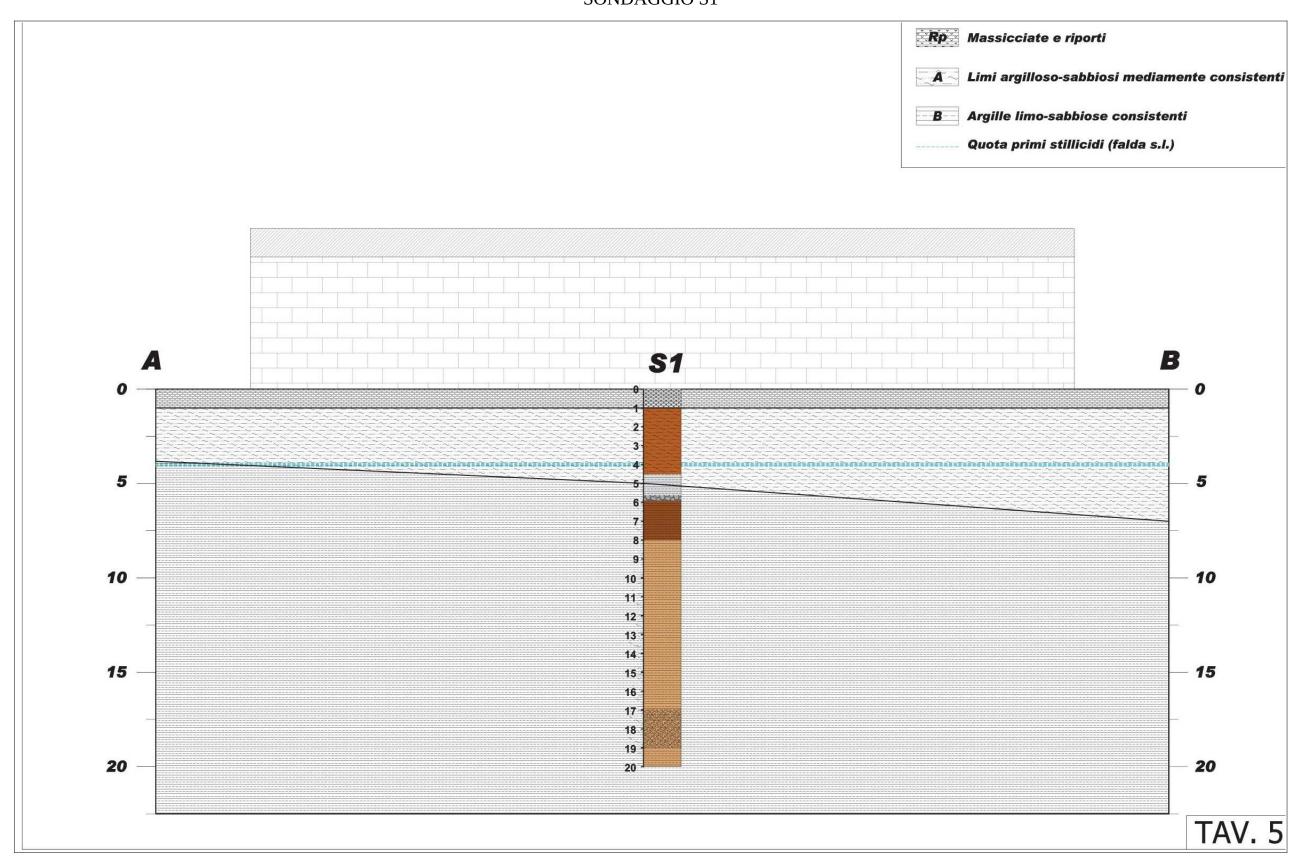
CAROTAGGIO CONTINUO

N.2 PROVE

PENETROMETRICHE IN

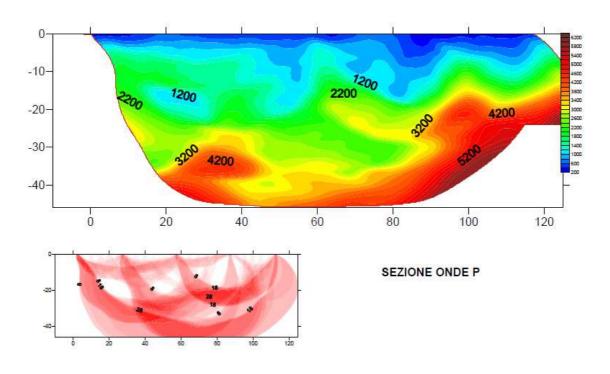
FORO

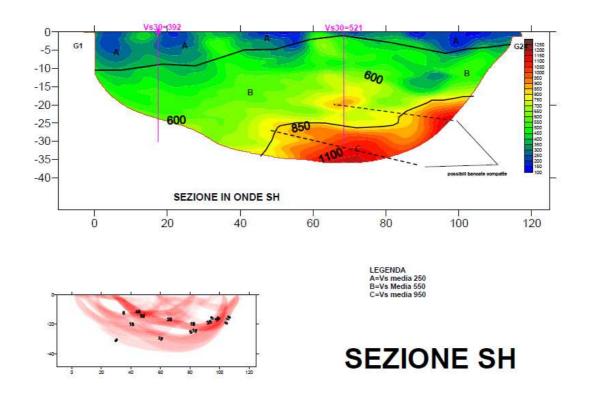
N. 1 SISMICA A RIFRAZIONE PROVE DI LABORATORIO


DATA INDAGINE APRILE 2016

NOTE -

UBICAZIONE PROVE


RISULTATI PROVE SONDAGGIO S1



SPT

SONDAGGIO	PROVA	PROFONDITÀ	N _{SPT}	LITOLOGIA
		(m)	(Ncolpi/3ocm – RIF. = rifiuto)	
S1	SPT1	1.50 - 2.00	20 (7-8-12)	А
S1	SPT2	7.10 – 7.60	30 (6-12-18)	В

SISMICA A RIFRAZIONE

PROVE DI LABORATORIO

CAMPIONE C1S1

Umidità naturale	18,0	96
Peso di volume	19,6	kN/m ³
Peso di volume secco	16,6	kN/m ³
Peso di volume saturo	20,3	kN/m³
Peso specifico	26,5	kN/m²
Indice dei vuoti	0,595	346
Porosità	37,3	96
Grado di saturazione	81,6	96
Limite di liquidità		96
Limite di plasticità		96
Indice di plasticità		96
Indice di consistenza		
Passante al set. nº 40		
Limite di ritiro		%
CNR-UNI 10006/00		-

Ghiaia	0,1	96
Sabbia	18,9	96
Limo	46,1	96
Argilla	34,9	96
D 10	0,000375	mm
D 50	0,012018	mm
D 60	0,019779	mm
D 90	0,574105	mm
Passante set. 10	98,5	96
Passante set. 42	88,4	96
Passante set. 200	81,0	96

σ	188	kPa
cu	94	kPa
σ_{Rim}		kPa
c _{u Rim}		kPa

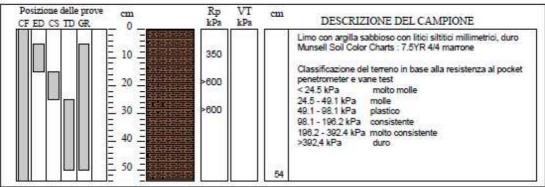
	mm.	JAGLIC	DIRETTO	
	96	Prova o	consolidata-lei	nta
	96	C	14,2	kPa
i.	%	ф	29,6	0
		C _{Res}		kPa
C	m/sec	Φ Res		0
		277		

COMPRESSIONE	TRIASSIALE
COMMITTED OF THE	LIMOSSIGNE

C.D.	Cd	kPa	фа	0
011	C'ou	kPa	ф'си	0
C.U.	Cou	kPa	фси	0
U.U.	Cu	kPa	фи	0

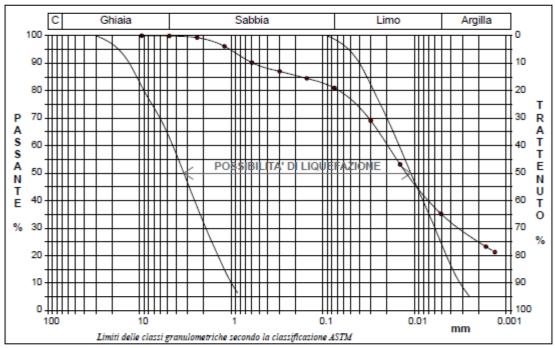
PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec
12,3 ÷ 24,5	6632	0,000862	1,28E-08
24,5 ÷ 49,0	6130	0,000742	1,19E-08
49,0 ÷ 98,1	7809	0,001051	1,32E-08
98,1 - 196,2	11045	0,001225	1,09E-08
196,2 ÷ 392,3	17087	0,001260	7,23E-09
392,3 ÷ 784,6	25084	0,001446	5,65E-09
784.6 ÷ 1569.3	41648	0.002087	4.91E-09


FOTOGRAFIA

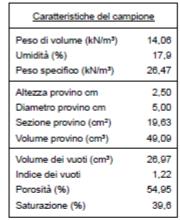
OSSERVAZIONI

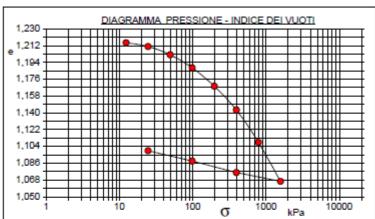
PERMEABILITA'
Coefficiente k


Tipo di campione: Cilindrico Qualità del campione: Q 5

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 18,0 %

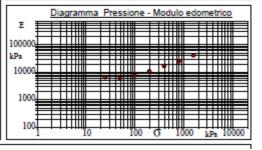
Peso di volume allo stato naturale (media delle due misure) = 19,6 kN/m³


ANALISI GRANULOMETRICA Modalità di prova: Norma ASTM D 422-63 Ghiaia 0,1 % 98,5 % D10 0,00038 mm Passante setaccio 10 (2 mm) Sabbia 18,9 % D30 0.00315 mm Passante setaccio 40 (0.42 mm) 88,4 % Limo 46,1 % 0,01202 mm D50 81,0 % Passante setaccio 200 (0.075 mm) 34,9 % Argilla D60 0.01978 mm 0,57411 mm D90 Coefficiente di uniformità Coefficiente di curvatura 1,34



Diametro mm	Passante %								
9,5200	100,00	0,2970	87,00	0,0052	35,23				
4,7500	99,89	0,1500	84,46	0,0017	23,27				
2,3600	99,27	0,0750	80,98	0,0013	21,28				
1,1900	96,15	0,0302	69,11						
0,5950	90,16	0,0144	53,17						

PROVA EDOMETRICA


Modalità di prova: Norma ASTM D 3080

				DI	AG	R/	W	M	Α	TE	M	PC) -	С	ED	IM	ΕN	IT	0				
Δ -	П	+	\blacksquare		_	-	_	Ц			L	Ц	Ш			Ц		Ш	Ľ	24	5		
0,7-	Н	+	#	#	_	Н	+	₩	Щ	┝	╄	Н	Щ	Щ	_	Ц	1	Щ		18	0	Щ	₩
% -	Н	₦	₩	H	_	Н	+	Щ			t	Н	₩	₩		Н	+	₩	╫─	00	+	Н	╫
1,4-		Ш	\parallel			П	1	I					I			П	İ	Ш		Ĩ	1	Щ	╨
2,1-	Н	#	#	Н	-	Н	4	Щ	Щ	_	Ļ	Ц	Щ	₩		Н	+	Щ	Щ_	196	1	Щ	Щ
	Н	\forall	₩	₩	_	Н	+	₩	\parallel	\vdash	╁	Н	₩	₩	_	П	Ŧ	H		Ĥ		Н	╫
2,8		\pm	#				1	I			İ	Ц	Ш	╨		Ц	İ	Ш		П	İ		∭
3,5-	Н	Щ	Щ	Щ		Н	4	I	Ï		+	H	₩	#	_	H	+	Щ	-	390	2,3	Щ	Щ
	Н	+	₩	₩		Н	+	₩	\parallel	\vdash	╁	Н	₩	₩		Н	+	₩	\parallel	${}_{H}$	$^{+}$	Н	₩
4,2	П	\pm	#			П	1	Ħ	Ш		İ	Ц	Ш	╫		П	İ	Ш		П	T	Ш	Ш
4,9-	Н	Щ	Щ	Щ	-		1	H	Н	_	-	Ц	Щ	Щ	_	Ц		Щ		18		Щ	Щ
	Н	+	₩	₩		Н	+	₩	\parallel	\vdash	╁	Н	₩	₩		Н	+	₩		${}_{H}$	+	Н	₩
5,6		Ш	Ш			Ħ	1	I			İ	Ц	Ш	╨		Ц	İ	Ш		П	İ	Ш	Ш.
6,3-	Н	+	+	,	/	Ц	4	Щ	Щ		\perp	Ц	Щ	Щ		Ц	\downarrow	Щ	Ш_	Н	Д	Щ	Щ
	\vdash	+	₩	\parallel	_	Ĥ	7	Ħ	H	-	+	H	₩	₩	_	Н	\pm	Ш		156	9.	3	#
7,0-	1	++	++	Щ	1		+	##	1	0	+	 	+++	10	0	 	t	1	000	1			##

Pressione kPa	Cedim. mm/100	Indice Vuoti	S	Modulo kPa	Cv cm²/sec	k cm/sec
12,3 24,5 49,0 98,1 1962,3 784,6 1569,3 392,3 98,1 24,5	5,1 9,7 19,7 35,4 57,6 86,3 125,4 172,5 161,8 147,9 135,5	1,188 1,169 1,143 1,108	0,014 0,029 0,046 0,065 0,085 0,115 0,139	6632 6130 7809 11045 17087 25084 41648	0,000862 0,000742 0,001051 0,001225 0,001260 0,001446 0,002087	1,19E-08 1,32E-08 1,09E-08 7,23E-09 5,65E-09

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D 3080

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

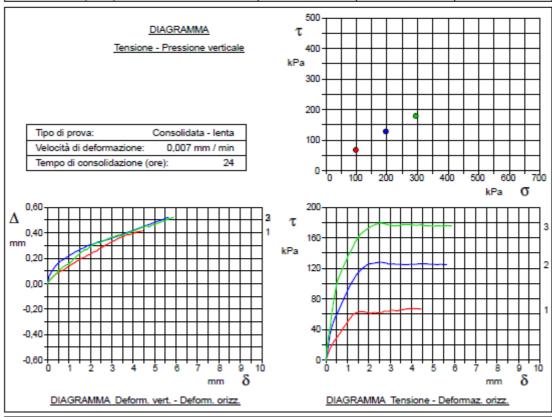
Pressione :	24,5 kPa	Pressione 4	19,0 kPa	Pressione (98,1 kPa	Pressione 1	96,2 kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0,02	0,0	0,02	9,7	0,02	19,7	0,02	35,4
0,25	5,0	0,25	13,5	0,25	27,3	0,25	48,3
0,50	5,3	0,50	14,0	0,50	27,9	0,50	49,1
1,00	5,8	1,00	14,5	1,00	28,8	1,00	50,1
2,00	6,3	2,00	15,1	2,00	29,8	2,00	51,2
4,00	6,8	4,00	15,8	4,00	30,8	4,00	52,2
8,00	7,3	8,00	16,5	8,00	31,7	8,00	53,2
15,00	7,7	15,00	17,1	15,00	32,5	15,00	54,1
30,00	8,1	30,00	17,8	30,00	33,2	30,00	54,8
60,00	8,5	60,00	18,4	60,00	33,9	60,00	55,4
120,00	8,9	120,00	18,9	120,00	34,5	120,00	56,1
240,02	9,2	240,00	19,3	240,00	35,0	240,00	56,7
480,02	9,5	480,00	19,5	480,00	35,2	480,00	57,1
900,02	9,6	900,00	19,7	900,00	35,4	900,00	57,4
1200,02	9,7	1200,00	19,7	1200,00	35,4	1200,00	57,6
1440,02	9,7	1440,00	19,7	1440,00	35,4	1440,00	57,6

Pressione 3	92,3 kPa	Pressione 7	84,6 kPa	Pressione 18	569,3 kPa	Pressione	kPa
Tempo	Cedim.	Tempo	Cedim.	Tempo	Cedim.	Tempo	Cedim.
minuti	mm/100	minuti	mm/100	minuti	mm/100	minuti	mm/100
0,02	57,6	0,02	86,3	0,02	125,4		
0,25	74,3	0,25	110,3	0,25	152,2		
0,50	75,1	0,50	112,0	0,50	154,5		
1,00	76,5	1,00	113,8	1,00	157,3		
2,00	77,9	2,00	115,7	2,00	160,2		
4,00	79,3	4,00	117,6	4,00	162,9		
8,00	80,6	8,00	119,4	8,00	165,4		
15,00	81,7	15,00	120,7	15,00	167,1		
30,00	82,7	30,00	122,0	30,00	168,7		
60,00	83,6	60,00	123,0	60,00	170,0		
120,00	84,3	120,00	123,9	120,00	171,0		
240,00	84,9	240,00	124,6	240,00	171,7		
480,00	85,5	480,00	125,0	480,00	172,2		
900,00	86,0	900,00	125,3	900,00	172,3		
1200,00	86,2	1200,00	125,4	1200,00	172,4		
1440,00	86,3	1440,00	125,4	1440,00	172,5		

CCDO Talamenta A.C. 2016

PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA Modalità di prova: Norma ASTM D 2166-85 Provino nº: 1 2 3 Condizione del provino: Indisturbato Velocità di deformazione (mm/min): 1,000 7,62 11,58 Sezione (cm²): Peso di volume (kN/m³): 19,6 Umidità naturale (%): 18,5 σ 180 kPa 160 140 Provino 1 120 100 80 60 Provino 2 40 20 0 1 δ Provino 3 % DIAGRAMMA SFORZO - DEFORMAZIONE Tangente Provino 1: 6026 Provino 2: Provino 3: Moduli di elasticità Secante Provino 1: Provino 2: Provino 3: kPa Provino 3: A rottura Provino 1: Provino 2:

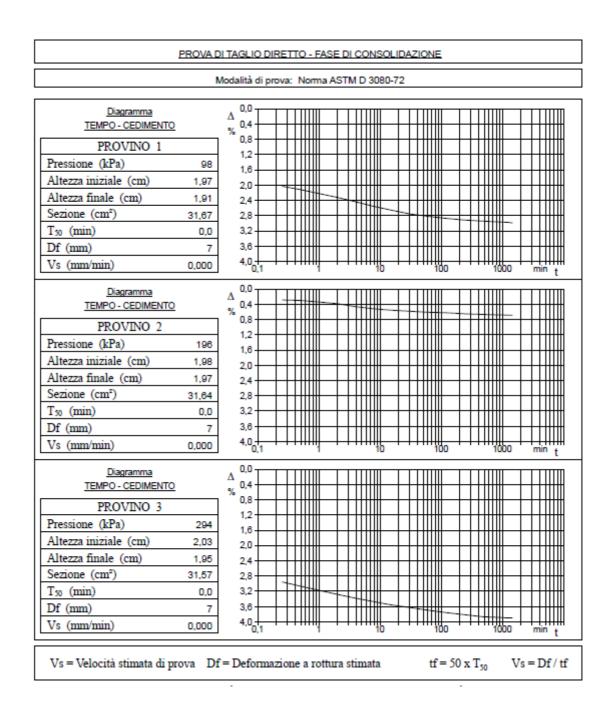
PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA


Modalità di prova: Norma ASTM D 2166-85

	Provi	ino 1			Provi	ino 2			Provi	ino 3	
Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione
%	kPa	%	kPa	%	kPa	%	kPa	%	kPa	%	kPa
0,35	21,1										
0,68	41,5										
1,01	62,8										
1,33	84,3										
1,66	107,8										
1,99	127,8										
2,32	145,1										
2,65	158,9										
2,97	170,1										
3,30	177,8										
3,63	183,1										
3,96	186,6										
4,29	188,4										
4,62	187,8										
4,94	185,5										
5,27	182,4										
5,60	177,7										
5,93	172,2										
6,26	164,3										
6,58	154,9										
6,91	143,1										
7,24	131,4										
7,57	118,1										
7,90	103,4										
8,22	91,1										
8,55	81,3										
8,88	74,7										
9,21	69,8										

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-72

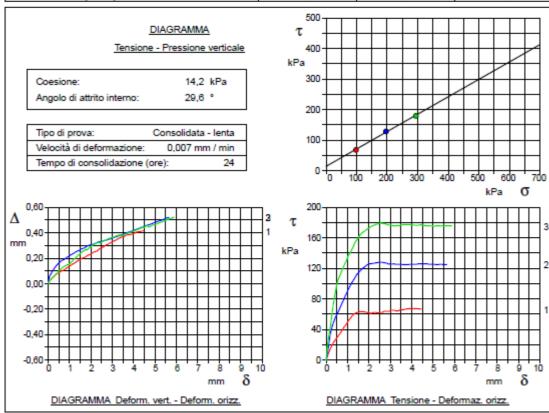

Provino n°:	1	2	3		
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato		
Pressione verticale (kPa):	98	196	294		
Tensione a rottura (kPa):	68	128	179		
Deformazione orizzontale a rottura (mm):	4,10	2,52	2,50		
Deformazione verticale a rottura (mm):	0,40	0,33	0,33		
Umidità iniziale e umidità finale (%):	20,3	21,8	19,3		
Peso di volume (kN/m³):	20,0	20,1	20,5		

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-72

	Provino 1			Provino 2			Provino 3	
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert.
0,080	6,4	0,03	0,063	7,9	0,06	0,059	18,0	0,02
0,215	15,8	0,05	0,191	33,8	0,10	0,205	44.2	0.05
0,357	23,5	0.07	0,345	49.2	0,13	0,338	72,6	0.07
0,521	29,9	0,09	0,501	59,6	0,16	0,490	97,8	0,10
0,681	35,8	0,10	0,652	68,7	0,18	0,644	110,4	0,12
0,840	43,1	0,12	0,823	79,1	0,20	0,807	121,5	0,14
1,000	49,1	0,14	0,965	87,7	0,22	0,966	131,1	0,15
1,160	55,2	0,16	1,126	97,4	0,23	1,112	139,9	0,17
1,309	60,4	0,17	1,289	105,0	0,25	1,280	148,9	0,20
1,487	62,5	0,19	1,454	112,6	0,26	1,443	157,4	0,23
1,656	63,3	0,20	1,626	117,7	0,28	1,575	163,4	0,25
1,830	62,9	0,22	1,781	121,5	0,29	1,746	167,8	0,27
1,983	61,9	0,23	1,944	124,9	0,30	1,905	171,3	0,28
2,150	61,6	0,25	2,124	126,2	0,31	2,077	174,1	0,30
2,323	62,2	0,26	2,276	126,8	0,32	2,252	176,7	0,32
2,483	61,9	0,28	2,442	127,8	0,33	2,414	177,9	0,32
2,648	62,6	0,30	2,601	128,1	0,34	2,573	179,2	0,33
2,801	63,9	0,31	2,765	127,1	0,34	2,753	178,5	0,35
2,970	64,2	0,33	2,925	125,6	0,35	2,902	177,0	0,36
3,131	65,3	0,34	3,086	125,6	0,36	3,081	176,3	0,37
3,290	64,2	0,36	3,265	125,2	0,37	3,236	175,4	0,38
3,463	65,9	0,37	3,427	125,2	0,38	3,403	176,0	0,37
3,637	65,9	0,38	3,588	124,9	0,39	3,564	177,0	0,39
3,793	66,9	0,38	3,757	124,9	0,41	3,731	177,3	0,40
3,949	67,3	0,39	3,927	125,2	0,41	3,913	177,3	0,41
4,098	67,6	0,40	4,084	125,2	0,42	4,055	177,0	0,42
4,285	67,3	0,41	4,252	125,6	0,43	4,225	176,3	0,43
4,452	66,6	0,42	4,406	125,9	0,44	4,386	177,0	0,44
			4,562	125,9	0,46	4,551	177,0	0,45
			4,729	125,9	0,46	4,722	176,0	0,44
			4,892	125,6	0,47	4,883	175,4	0,46
			5,062	125,2	0,49	5,055	175,1	0,47
			5,247	124,9	0,50	5,214	175,7	0,48
			5,407	125,2	0,51	5,375	175,4	0,49
			5,556	124,9	0,52	5,542	175,7	0,50
						5,712	176,0	0,51
						5,881	175,7	0,52
		+						
					\vdash			
		+			\vdash			-

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE


Modalità di prova: Norma ASTM D 3080-72

	Provino 1			Provino 2			Provino 3	
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,25	40,00	2,03	0,25	5,70	0,29	0,25	60,00	2,96
0,50	41,80	2,12	0,50	6,00	0,30	0,50	62,23	3,07
1,00	43,80	2,22	1,00	6,80	0,34	1,00	64,48	3,18
2,00	45,80	2,32	2,00	7,70	0,39	2,00	66,62	3,28
4,00	48,00	2,44	4,00	9,23	0,47	4,00	68,64	3,38
8,00	50,40	2,56	8,00	10,31	0,52	8,00	70,53	3,47
15,00	52,30	2,65	15,00	11,04	0,56	15,00	72,18	3,56
30,00	54,20	2,75	30,00	11,53	0,58	30,00	73,54	3,62
60,00	55,50	2,82	60,00	12,08	0,61	60,00	75,01	3,69
120,00	56,60	2,87	120,00	12,33	0,62	120,00	76,31	3,76
240,00	57,40	2,91	240,00	12,88	0,65	240,00	77,39	3,81
480,00	58,00	2,94	480,00	13,20	0,67	480,00	78,47	3,87
900,00	58,40	2,96	900,00	13,50	0,68	900,00	78,85	3,88
1200,00	58,60	2,97	1200,00	13,60	0,69	1200,00	79,10	3,90
1438,18	58,90	2,99	1440,00	13,60	0,69	1440,00	79,10	3,90
\vdash								
 								
\vdash								
\vdash								
CCTO Tabana	4 E 2016		- 1					

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-72

Provino n°:	1	2	3
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato
Pressione verticale (kPa):	98	196	294
Tensione a rottura (kPa):	68	128	179
Deformazione orizzontale a rottura (mm):	4,10	2,52	2,50
Deformazione verticale a rottura (mm):	0,40	0,33	0,33
Umidità iniziale e umidità finale (%):	20,3	21,8	19,3
Peso di volume (kN/m³):	20,0	20,1	20,5

CAMPIONE C2S1

SONDAGGIO: 1	CAMPIO	NE: 2		PROFONDITA': n	7.1-7.8
CARATTERISTICHE FISICHE	ANALISI	GRANULOMETRICA		COMPRESSIO	NE
Umidità naturale 21,1 % Peso di volume 19,5 kN/ Peso di volume secco 16,1 kN/ Peso di volume saturo 19,9 kN/	m³ Sabbia Limo	3	0,3 % 18,6 % 34,0 %		05 kP 03 kP
Peso specifico 28,5 kN/ Indice dei vuoti 0,643 9 Porosità 39,1 9 Grado di saturazione 88,5 9 Limite di liquidità 9 Limite di plasticità 9 Indice di plasticità 9	D 50 D 60 D 90 Passante	e set. 42	091 mm	Cu Rim TAGLIO DIRET Prova consolid C	lata-lenta kP
Indice di consistenza Passante al set. nº 40 Limite di ritiro 9/ CNR-UNI 10006/00	P-01-15	BILITA'	cm/sec	C _{Res}	kP o
COMPRESSIONE TRIASSIALE	200	PROVA EDOMETRIC	A	32	
C.D. Cd kPa	0	σ kPa	E kPa	Cv cm²/sec	k cm/sec
C.U. C'cu kPa ()'cu C'cu kPa ()'cu U.U. C'u kPa () U U.U. C'u kPa () U CTOOGRAFIA	0	12,3 ÷ 24,5 24,5 ÷ 49,0 49,0 ÷ 98,1 98,1 ÷ 196,2 196,2 ÷ 392,3 392,3 ÷ 784,6	10893 6870 4657 4572 5953 11979	0,000384 0,000559 0,000544 0,001089 0,000944 0,000461	3,46E-0 7,97E-0 1,15E-0 2,33E-0 1,56E-0 3,77E-0
20X - 1076/20 4 2 _641		784,8 = 1569,3 SERVAZIONI o di campione: Cilindrio	24855 xo Quali	0,000433 tà del campione: (1,71E-0
Posizione delle prove cm	Rp VI		DIZIONE D	EL CALINOTE	
CF GR CS ED 0	kPa kPi 200 200	Argilla con lir Munsell Soil Classificazio penetromete < 24.5 kPa 24.5 - 49.1 k 49.1 - 98.1 k 98.1 - 196.2	no sabbiosa co Color Charts : ne del terreno i r e vane test molto m Pa molle	nte	

Coefficiente di uniformità

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 21,1 %

Peso di volume allo stato naturale (media delle due misure) = 19,5 kN/m3

ANALISI GRANULOMETRICA Modalità di prova: Norma ASTM D 422-63 D10 Ghiaia 0,3 % mm Passante setaccio 10 (2 mm) 97,5 % Sabbia 18,6 % D30 --- mm Passante setaccio 40 (0.42 mm) 86,9 % Limo 34,0 % D₅₀ 0,00614 mm 81,1 % Passante setaccio 200 (0.075 mm) Argilla 47,1 %

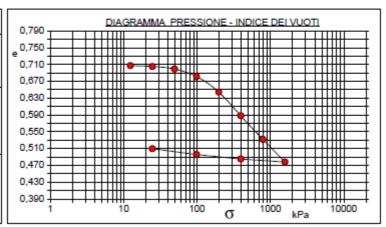
Coefficiente di curvatura

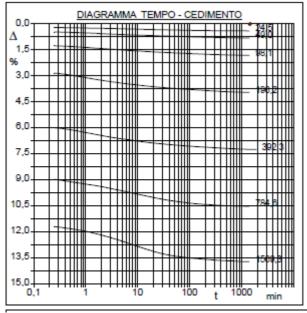
D60

D90

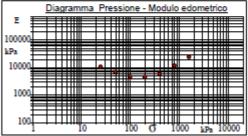
0,01209 mm

0,65907 mm


	_		Ξ											Ξ																					Ξ													Ξ							=			
400	L	С	L				G	hi	iai	a													S	al	bk	oic	a													ı	LİI	no)							ļ	۱ŗ	gil	la		」ຼ			
100	Ί				I			I			ľ	Ι	П	1	I		7	^	_				I	Ι		Ι	Ι							\prod	Ι	7	V										Ι					I			I°			
90	4	Ц	Ц	Ц	4	4		4			Щ	\parallel	Ц	1	Y		_	4	_		_	١	\			ļ	1	_				_	_	Ц	ļ	Ц	_[V	_	L	_		_		\parallel	Ц	1	L	L	4		4			1	0		
	+	H	Н	Н	+	\dashv	_	+	_	_	Н	#	Н	+	+	V	_	+	_	_	_	\parallel	+	╀	F	ì	†	7	-	_	- 1	•-	_	Н	+	Н	+	1	-	\vdash	+	_	_	_	╟	H	+	┞	╀	+	_	+		+	+			
80	'†	H	H	H	†	7		†			Ħ	\dagger	H	†	†	1	1	†				Ħ	†	t	t	t	t		_		H		_	Ħ	ľ	Ħ	4	1	1	H	_				\parallel	Ħ	t	H	t	†		†		1	12	0		.
P 70	Į	П		\Box	1			I			\blacksquare		П	I	1		ĺ	1					I	I	I	I	I							П	I	П	1	_	A		Ţ					П	I		I	1		I]3	0	F	
Α	+	H	Н	Н	+	\dashv	_	+		_	₩	#	H	+	+	\dashv	4	Н	_	_	_	\parallel	+	╀	┞	╀	+	_	_	_	L	_	_	H	╀	Н	+	+	_	ł	•	\	_	_	╟	H	+	┞	╀	+	_	+		+	+		1	i
S 60	1	H	Н	Н	+	\dashv		\dagger	_		H	╫	H	+	+	\dashv	_	V		_		H	+	t	t	t	†	_	_		H		_	H	t	Н	+	+		١	(_	۹	1	H	$^{+}$	H	t	+		+		\forall	14	0		
A 50	1	Ц	İ		1			1			I		П	İ	1			1	/	,	P	þ	9	SI	В	IL	h	A	<u>' I</u>	DI	L	IG	U	Ē	Λ	4	10	M	E	`	Ţ				ľ	И	Ţ		İ	1		1			15	0	E	:
N T	+	$\!$	H	Н	+	\dashv		+			Н	\parallel	H	+	4	\dashv	_	4	1		_	\parallel	4	╀	ŀ	╀	+	_	_		L	_	_	H	╀	Н	4	4	_	_	1	_	_		\parallel	H	P	1	Ł	+		+		4	+		ľ	
E 40	1	H	Н	Н	+	\dashv	_	+	_	_	Н	╫	Н	+	+	\dashv	_	+	+	_	_	H	+	t	H	t	$^{+}$	-	_	_	H	_	_	H	t	Н	+	+	_	\vdash	+	۲	_	_	╫	H	+	┝	f	Ť	_	₹		\dashv	16	0	1	
% 30	İ	Ш	İ	İ	1			İ			Ħ	I	Ц	İ	1			1	1			I	1	İ	İ	İ	İ							Ħ	İ	Ц	1	1				1				Ц	İ	İ	İ	1		Í	*	•	1,	n	C	'
/6 55	Ŧ	Щ	\sqcup	Ц	4	\dashv		4			Щ	\parallel	Ц	4	4	\dashv		4		ļ		\parallel	4	ļ	L	ļ	\downarrow							Щ	ļ	Ц	4	4		L	_	1			\parallel	Щ	\downarrow	L	L	4		4		_	1	-	9	6
20	1	H	Н	Н	+	\dashv		+			Н	╫	Н	+	+	\dashv		+		-		H	+	+	┝	$^{+}$	+	-	_		H			H	+	Н	+	+		\vdash	+	_	╁		╫	H	+	┝	╁	+		+		+	8	0		
10	1	l			1			1			I		Ц	1	1			1			Ţ	╽	1	İ	İ	İ	İ							Ħ	İ	Ц	1	1					1			Ш	İ		İ	1		1			1,9	n		
	Ţ	\prod	\prod		1			\perp			Д		П	\perp	1			1			1		\prod	ľ		ľ	Į				Ĺ			\prod	ľ	Ц	1	1					1	l		\prod	Ţ			1		1			1 ~			
0		Щ		Ц	+	4		+				Щ	Н	+	+	4		4		_		H	4	+	1	+	+	4		_	L			Ц		Ц	4	4		_	4			_	Ĭ	Н	+		1	4		+				00		
	10	טע					Lin	nit	ti d	eli	1(e c		551	g	ra	nu	lon	me	tri	ch	e.	1 56	ю	971	de	o i	а	ci	75	sif	ic	azi		o. e		T.	M							U.	.0	1			n	nn	n			U.	001			


Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
9,5200	100,00	0,2970	85,18	0,0051	47,28				
4,7500	99,67	0,1500	83,22	0,0016	35,30				
2,3600	98,48	0,0750	81,14	0,0013	33,30				
1,1900	94,57	0,0214	68,25						
0,5950	89,21	0,0115	59,26						

PROVA EDOMETRICA


Modalità di prova: Norma ASTM D 3080

Caratteristiche del camp	<u>pione</u>
Peso di volume (kN/m³)	18,68
Umidità (%)	20,9
Peso specifico (kN/m³)	26,47
Altezza provino cm	2,00
Diametro provino cm	5,03
Sezione provino (cm²)	19,87
Volume provino (cm³)	39,74
Volume dei vuoti (cm³)	16,54
Indice dei vuoti	0,71
Porosità (%)	41,61
Saturazione (%)	79,1

Pressione	Cedim.	Indice	Ĝ	Modulo	Cv	k
kPa	mm/100	Vuoti		kPa	cm²/sec	cm/sec
12,3 24,5 49,0 98,1 196,2 392,3 784,6 1569,3 392,3 98,1 24,5	5,8 8,1 15,2 36,3 79,2 145,1 210,6 273,7 265,6 253,0 236,7	0,645 0,588	0,020 0,060 0,122 0,187 0,186	10893 6870 4657 4572 5953 11979 24855	0,000384 0,000559 0,000544 0,001089 0,000944 0,000461 0,000433	7,97E-09 1,15E-08 2,33E-08 1,56E-08 3,77E-09

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D 3080

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pre	essione	24,5 k	Pa	Pn	essione	49,0 k	:Pa	Pr	essione	98,1 k	:Pa	Pre	ssione	196,2	kPa
Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100
0,02	0,0			0,02	8,1			0,02	15,2			0,02	36,3		
0,25	4,2			0,25	9,1			0,25	25,3			0,25	56,8		
0,50	4,4			0,50	9,8			0,50	26,1			0,50	59,0		
1,00	4,8			1,00	10,5			1,00	27,2			1,00	62,0		
2,00	5,1			2,00	11,3			2,00	28,5			2,00	65,1		
4,00	5,5			4,00	12,0			4,00	29,7			4,00	67,7		
8,00	5,9			8,00	12,8			8,00	30,9			8,00	70,0		
15,00	6,4			15,00	13,4			15,00	31,9			15,02	71,8		
30,00	6,8			30,00	14,0			30,02	32,8			30,02	73,5		
60,00	7,2			60,00	14,5			60,02	33,7			60,02	74,8		
120,00	7,5			120,00	15,0			120,02	34,5			120,02	76,0		
240,00	7,8			240,00	15,5			240,02	35,2			240,02	77,2		
480,00	8,0			480,00	15,9			480,02	35,8			480,02	78,2		
900,00	8,1			900,00	16,2			900,02	36,2			900,02	78,9		
1210,00	8,1			1210,00	16,3			1210,02	36,3			1210,02	79,1		
1440,00	8,1			1440,00	15,2			1440,02	36,3			1440,02	79,2		

Pre	ssione	392,3	kPa	Pre	essione	784,6	kPa	Pre	ssione	1569,3	kPa	Pre	ssione		kPa
Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100	Tempo min	Cedim. mm/100
0,02	79,2			0,02	145,1			0,02	210,6						
0,25	120,0			0,25	179,6			0,25	233,7						
0,50	122,2			0,50	182,3			0,50	236,2						
1,00	125,5			1,00	185,1			1,00	239,1						
2,00	128,9			2,00	188,0			2,00	243,4						
4,00	132,0			4,00	191,7			4,00	248,5						
8,00	134,5			8,00	195,5			8,00	254,4						
15,00	136,8			15,00	199,0			15,00	259,7						
30,00	138,7			30,00	202,6			30,00	264,6						
60,00	140,3			60,00	205,4			60,00	267,8						
120,00	141,6			120,00	207,6			120,00	269,8						
240,00	142,7			240,00	208,9			240,00	271,4						
480,00	143,8			480,00	209,9			480,00	272,6						
900,00	144,6			900,00	210,5			900,00	273,2						
1210,00	144,9			1210,00	210,6			1210,00	273,6						
1440,00	145,0			1440,05	210,6			1440,00	273,7						
1920,00	145,1														

PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA Modalità di prova: Norma ASTM D 2166-85 Provino nº: 2 3 Condizione del provino: Indisturbato Velocità di deformazione (mm/min): 1,000 Altezza (cm): 7,62 11,58 Sezione (cm²): Peso di volume (kN/m³): 19,5 21,0 Umidità naturale (%): σ 270 kPa 240 210 Provino 1 180 150 120 90 Provino 2 60 30. 0. δ Provino 3 % DIAGRAMMA SFORZO - DEFORMAZIONE 7460 Provino 3: Tangente Provino 1: Provino 2: Moduli di elasticità Provino 1: Provino 2: Provino 3: Secante kPa A rottura Provino 1: Provino 2: Provino 3:

PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA

Modalità di prova: Norma ASTM D 2166-85

	Provi	ino 1			Provi	ino 2			Provi	ino 3	
Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione	Deform.	Tensione
%	kPa	%	kPa	%	kPa	%	kPa	%	kPa	%	kPa
0,35	26,1										
0,68	51,4										
1,01	78,3										
1,33	106,5										
1,66	136,7										
1,99	164,2										
2,32	186,4										
2,65	201,7										
2,97	205,3										
3,30	200,4										
3,63	188,1										
3,96	170,8										
4,29	157,0										
4,62	145,0										
4,94	133,0										
5,27	121,1										
5,60	108,4										

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 199 RT

5RIFERIMENTO PRATICA PDC N. 73 DEL 2010

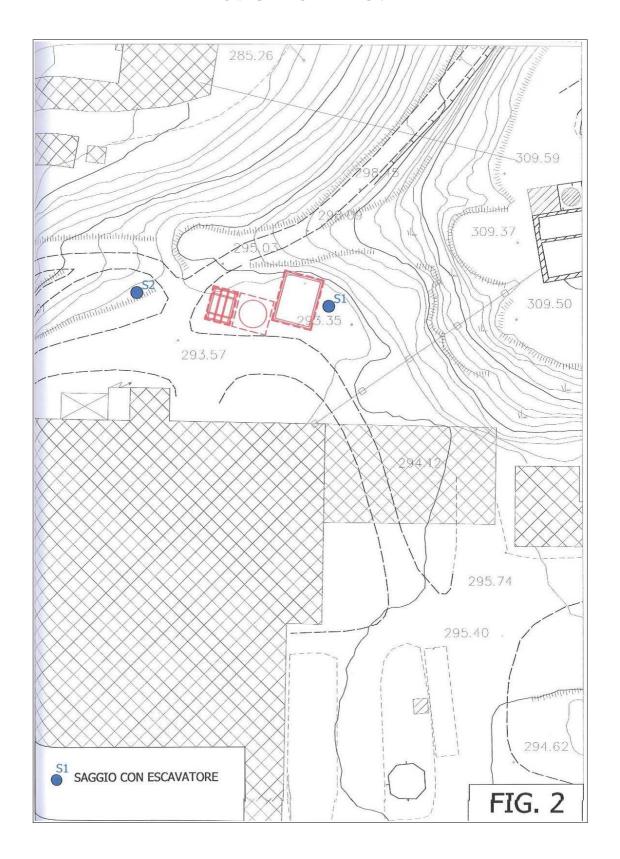
EDILIZIA

LOCALITÀ VIA DELLE CAVE,

SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE IMPIANTO

DI SEDIMENTAZIONE E DISIDRATAZIONE DELLE


ACQUE REFLUE

NUMERO E TIPO DI N. 2 SAGGIO ESPLORATIVO INDAGINE

DATA INDAGINE OTTOBRE 2010

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE SAGGIO 1

	Via delle cave	- Serre di Rapolano Terme (SI) Profondità	1,5	<u>0 m</u>	Sonda	a	
Scala	Stratigrafia	Descrizione	% Carotaggio	ind. semi ind. ind. rim.	Quota H2O	S.P.T.	TON
0.5		Travertino alterato carsificato e pedogenizzato.					

SAGGIO 2

		Via delle cave	- Serre di Rapolano Terme (SI)	Profondità	5,00	<u>0 m</u>	Sonda		
	Scala	Stratigrafia	Descrizione		% Carotaggio	Semi ind.	Quota H2O	S.P.T.	NOTE
	1		Travertino alterato cars pedogenizzato.	sificato e					
	2	8 - 8 -							
	3								
	4								
	5								
	6								
	7						4		
	8								7
	9								
	10								
The second second second	11								
	12.								
	13								
	14								
	15								

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 200 RT

RIFERIMENTO PRATICA PDC N. 15 DEL 2018

EDILIZIA

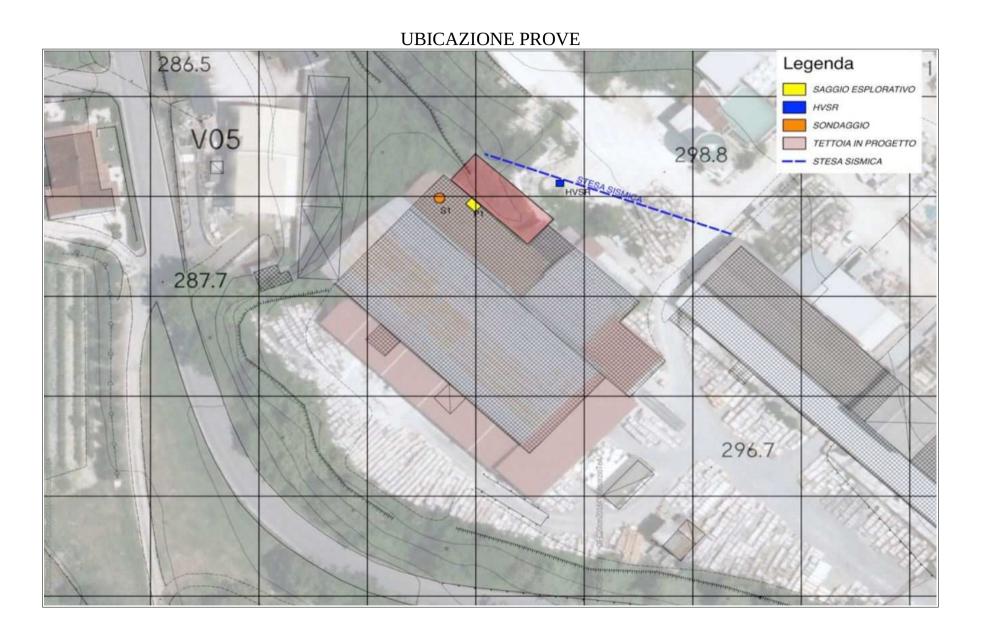
LOCALITÀ VIA DELLE CAVE,

SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE TETTOIA

AD USO MAGAZZINO

NUMERO E TIPO DI N. 1 SAGGIO ESPLORATIVO

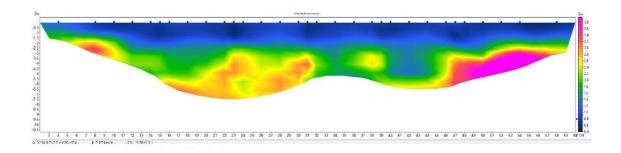

INDAGINE N. 1 SONDAGGIO A

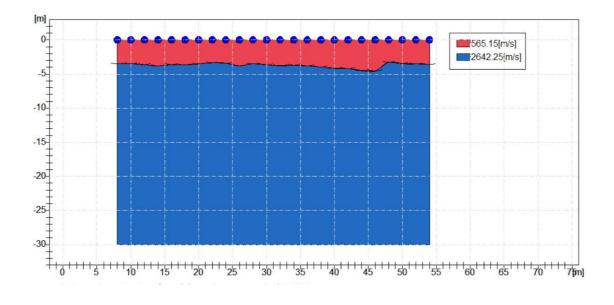
CAROTAGGIO CONTINUO N. 1 SISMICA A RIFRAZIONE

N. 1 MASW N. 1 HVSR

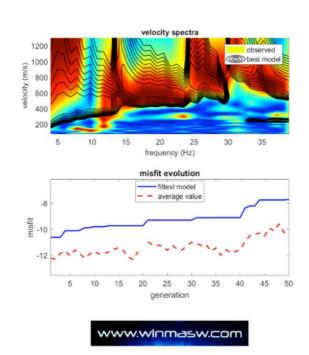
DATA INDAGINE SETTEMBRE 2018

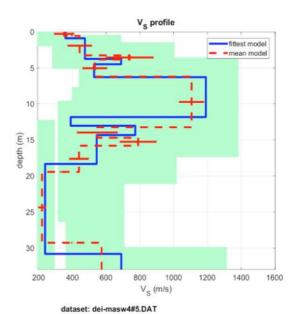
NOTE -

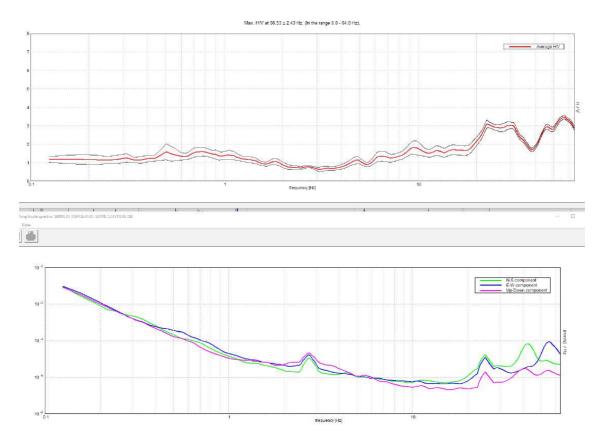

RISULTATI PROVE SAGGIO P1



SONDAGGIO S1


ALIBRANDO DEI SRL 15			rofondità raggiunta Quota Ass. P.C. 296			Σ.	Certif			Certificato nº			Pagina				
Operatore Indegine PAOLINO TECNA REALIZ			Note1 ZAZIONE DI TETTOIA E INSTALLZZAZIONE				4					Inizio/Fine Esecuzione 20 SETTEMBRE 2018					
Responsabile Sor		Sondaggio	Sondaggio Tipo Carotaggio			0	Tipo Sonda				Coordinate X Y						
Litologia	Descrizione	S1	Quota	n-	arametri ge	CONTINUO	10	S.P.T.	6001 II	BERETT	0,45 = XV 55 =	2	1 ~	f	r	8	e)
E C	STANDING TO		Quois			CV Status (Fig.)		207101	Pocket Test kg/cmq	Yane Test kg/cmg	Campioni	Metodo Perforazione	Metodo Stabilizzaz.	Cass.	Falda	Altre prove	Altre prov
	Materiale di riporti eterogeneo: limi ari sabbiosi marroni ali a scarti lavorazioni travertino di varie dimensioni Travertino compatto Argilla grigio turci sovraconsolidata (pliocene)	gilloso ternati e del	13.30	\$C=30			\$C=100	28-40-RI 4.50 PC				(CS) 6.00	6.00				


SISMICA A RIFRAZIONE


MASW

dataset: dei-masw4#5.DAT velocity spectrum: dei-masw4#5FVS.mat Vs30 & VsE (best model): 381 483 m/s Vs30 & VsE (mean model): 387 480 m/s

HVSR

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 201 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 3504 DEL

EDILIZIA 15/03/2005

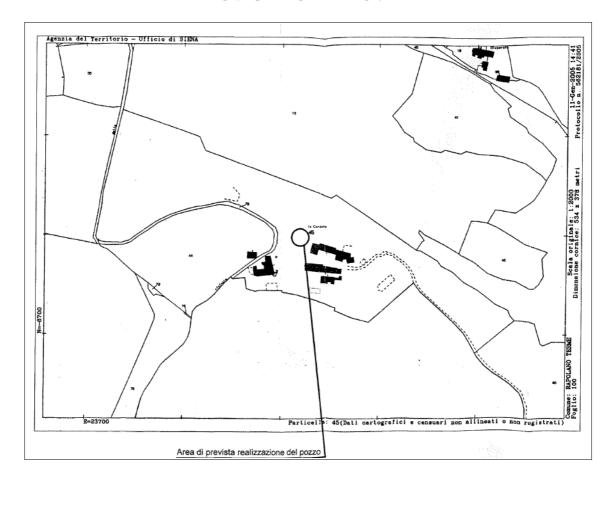
PRATICA N. 03/2005

LOCALITÀ LOCALITÀ CARDETA

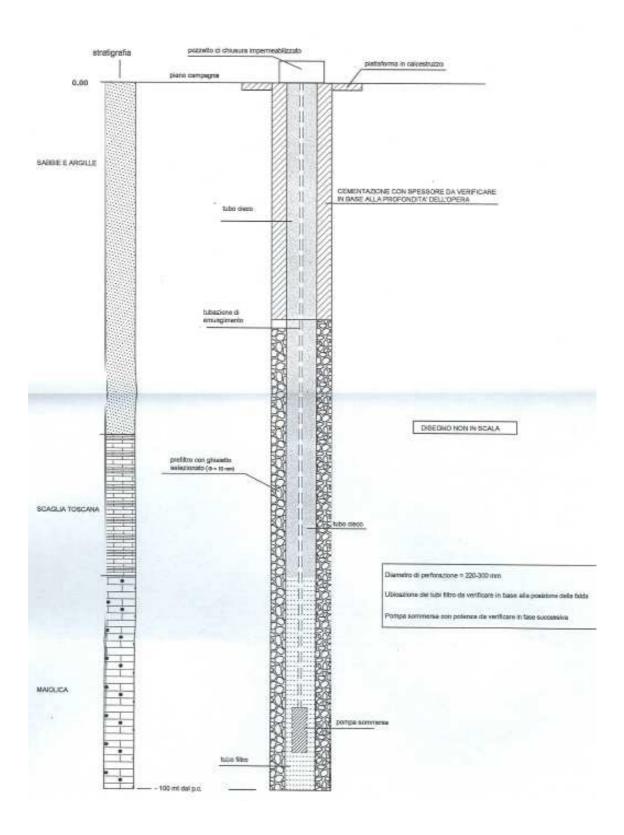
RAPOLANO TERME

PROGETTO PERFORAZIONE DI UN

POZZO PER LA RICERCA DI ACQUE DAL SOTTOSUOLO PER USO DOMESTICO


NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO


DATA INDAGINE MAGGIO 2005

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 202 RT

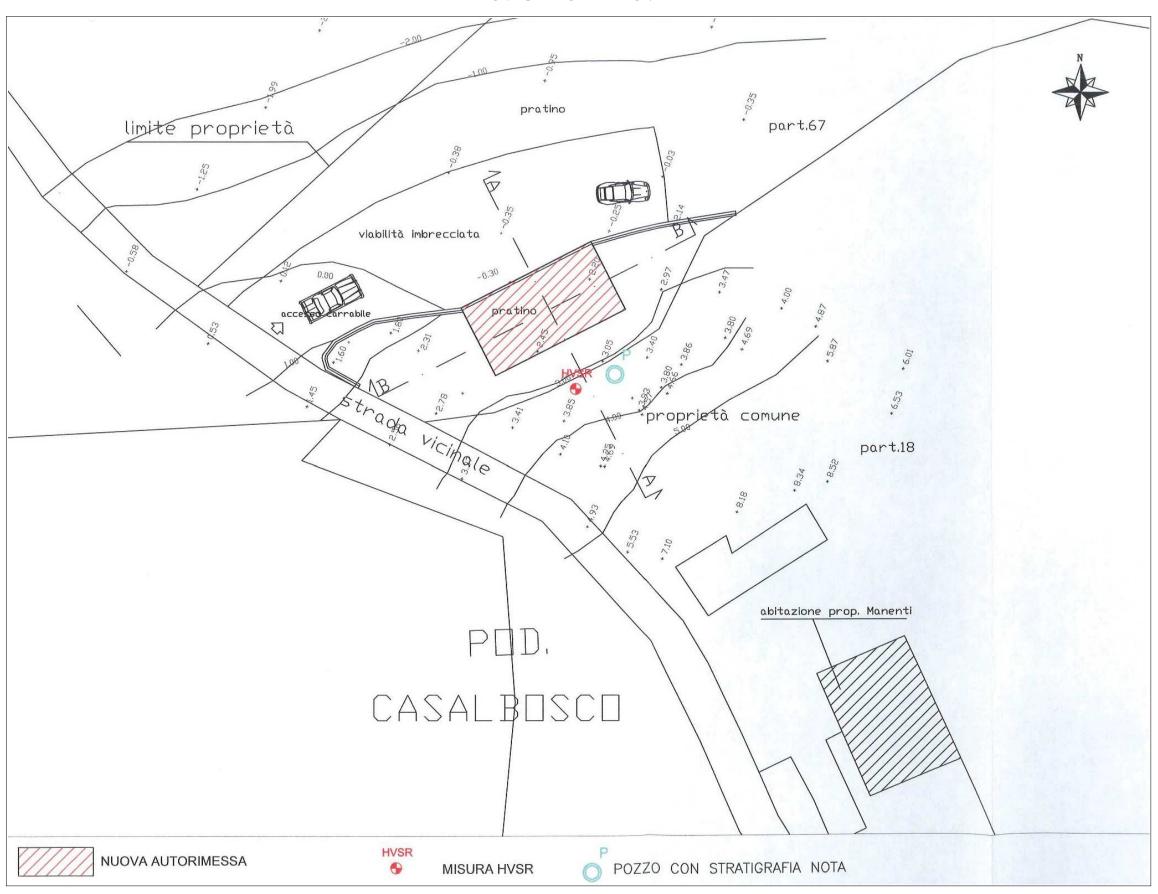
RIFERIMENTO PRATICA PDC N. 17 DEL 2012

EDILIZIA

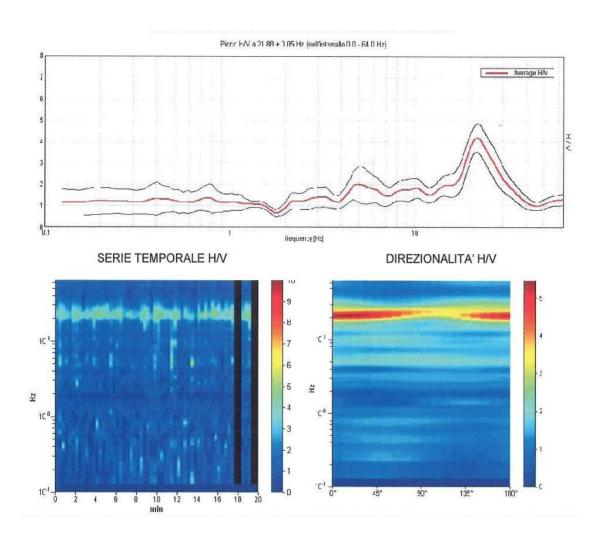
LOCALITÀ PODERE CASALBOSCO

PROGETTO REALIZZAZIONE DI

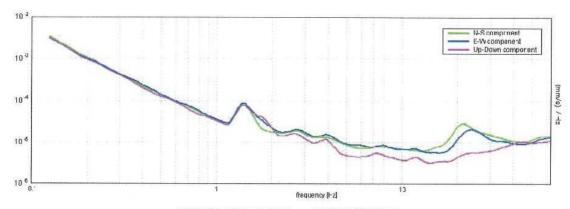
UN'AUTORIMESSA

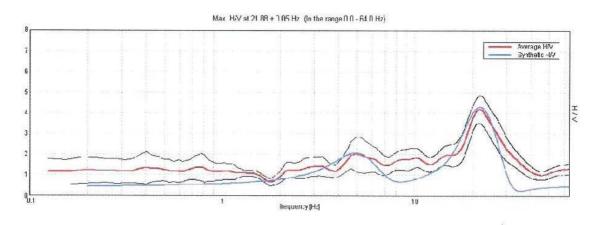

INTERRATA

NUMERO E TIPO DI N. 1 HVSR INDAGINE

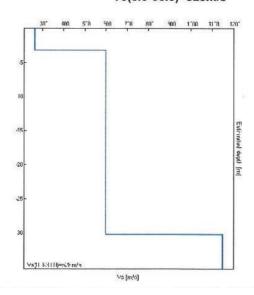

DATA INDAGINE GIUGNO 2012

NOTE -


UBICAZIONE PROVE


RISULTATI PROVE HVSR

INDAGINE N. 202 RT



H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson				
3.20	3.20	264	0.40				
30.20	27.00	600	0.35				
inf.	inf.	1150	0.35				

Vs(0.0-30.0)=528m/s

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 203 RT

RIFERIMENTO PRATICA PROTOCOLLO N. 13391 DEL

EDILIZIA 23/09/2008

PRATICA N. 03/08

LOCALITÀ LOCALITÀ PODERE

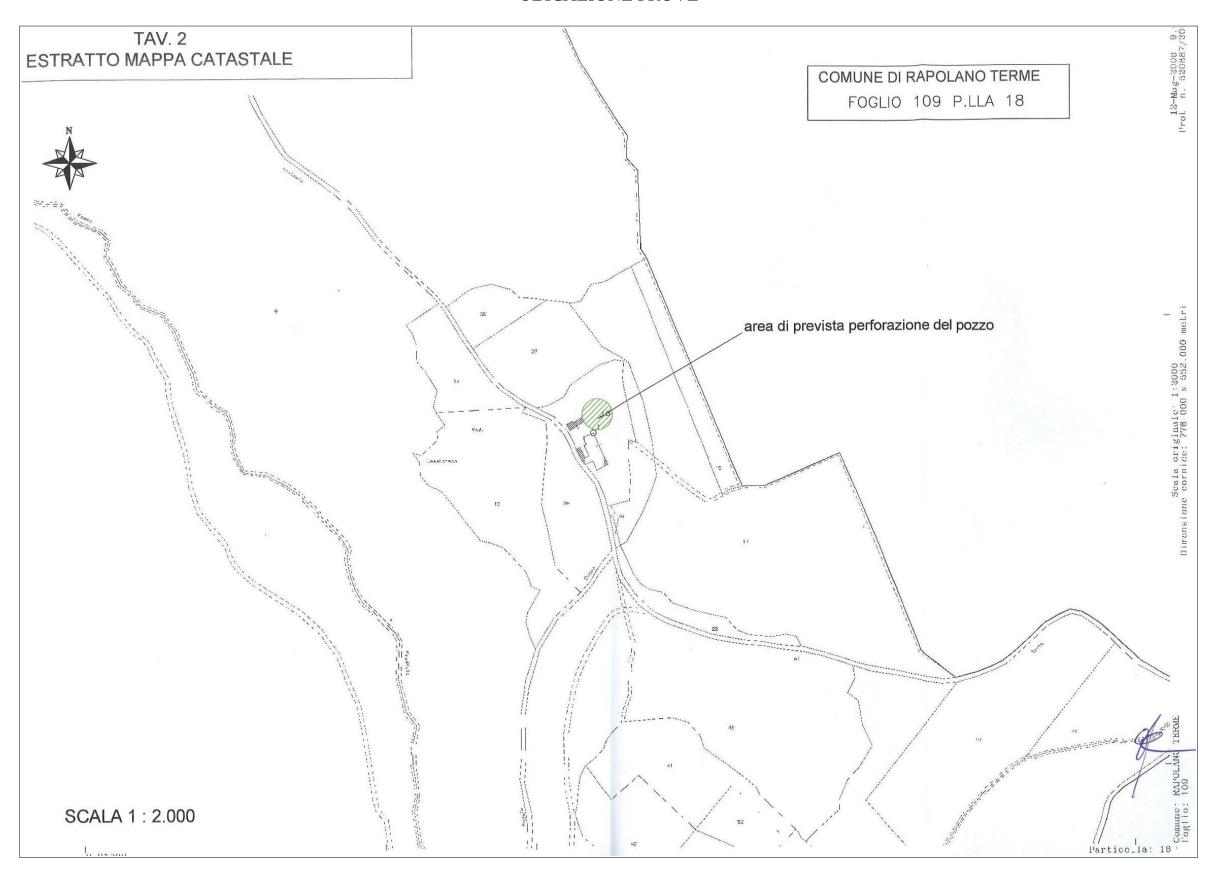
CASALBOSCO

RAPOLANO TERME

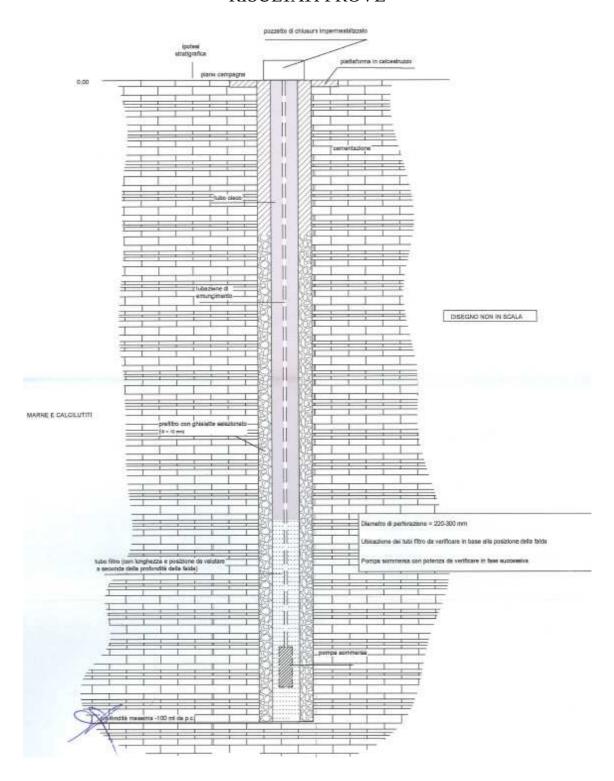
PROGETTO PERFORAZIONE DI UN

POZZO PER RICERCA

ACQUA AD USO DOMESTICO


NUMERO E TIPO DI N.1 PERFORAZIONE PER

INDAGINE POZZO


DATA INDAGINE SETTEMBRE 2008

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 204 RT

RIFERIMENTO PRATICA

EDILIZIA

LOCALITÀ PODERE ASCIANELLO,

RAPOLANO TERME

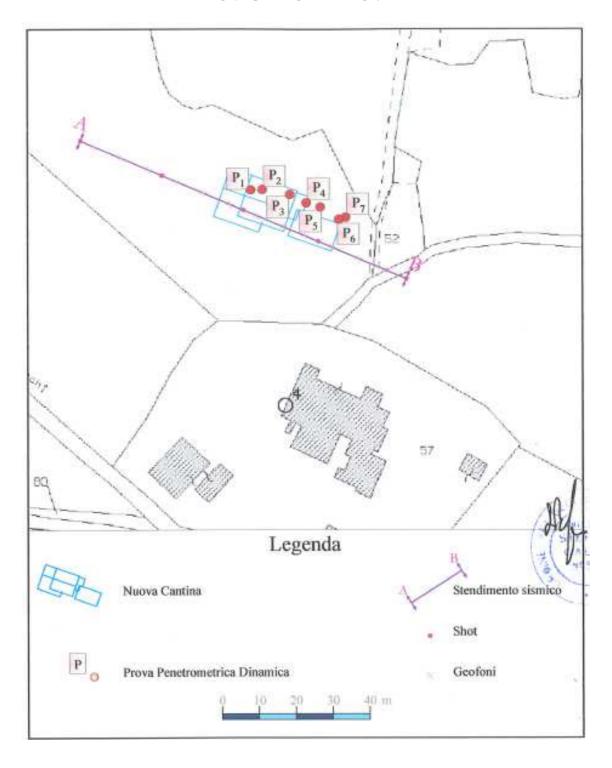
PROGETTO REALIZZAZIONE DI ANNESSI

AD USO CANTINA,

DEPOSITO E RIMESSA

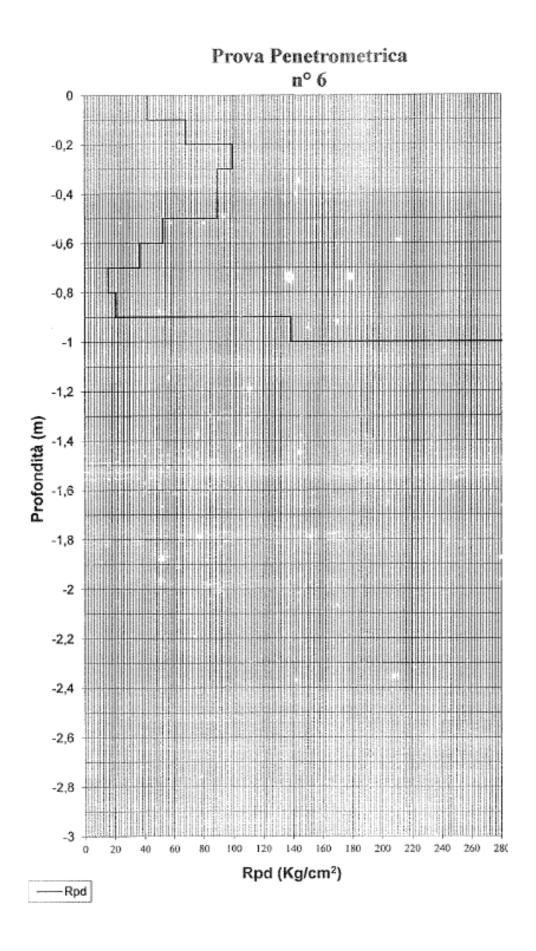
NUMERO E TIPO DI N. 2 PROVE

INDAGINE PENETROMETRICHE

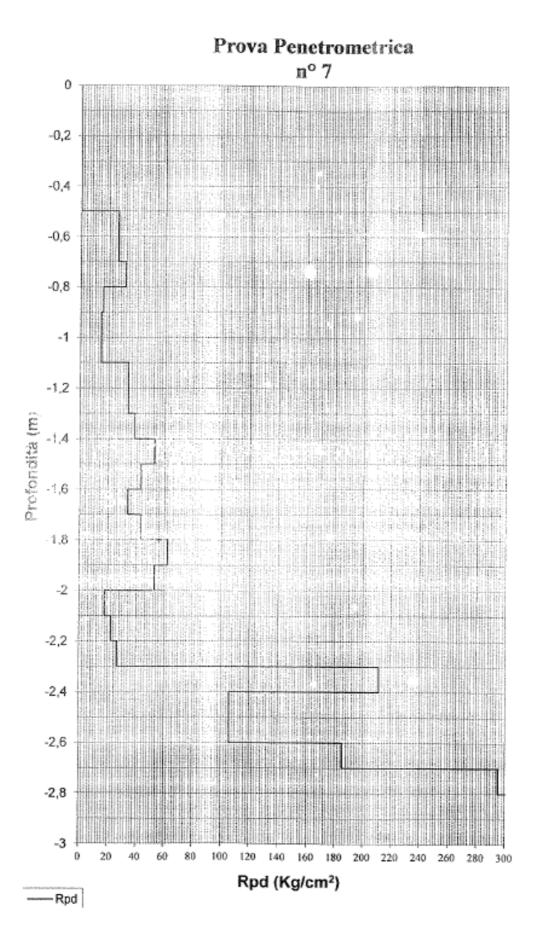

DINAMICHE

N. 1 SISMICA A RIFRAZIONE

DATA INDAGINE GIUGNO/LUGLIO 2012

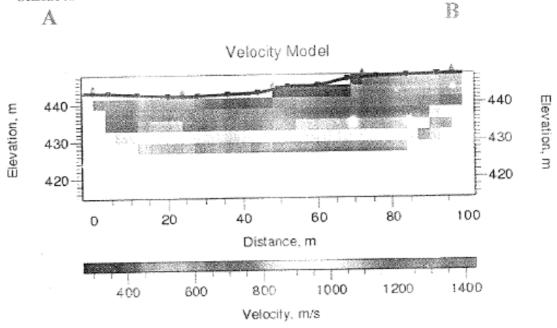

NOTE -

UBICAZIONE PROVE



RISULTATI PROVE

Prova P	ene	trometr	ica Dina	mica n°	6	del	22/06/12
ABELLA	VALO	ORI RESI	STENZA				
· ALCENDARIA		TARE TREPAR	2 227 72.17	Proprietà:	Soc. As	r. Aettut	тапо s.s.
1 = 20.5 Kg	1		N = N(10)			H = 32 cm	
= 10.0 cm	2		D = 3,57 cm			d = 10 cm	
rofondità	N.	Rpd	asta	Profondità	N	Rpd	2812
metri	(colpi)	(Kg/cm²)	numero	njetri	restri.	(Kg/coc)	48633
0,0 - 0,1	8	41,9	1	5,0 - 5,1			į.
0,0 - 0,1	13	68,0		5,1 - 5,2			7
0,2 - 0,3	18	99.4	1	5,2 - 5,3			- 7
0.3 - 0.4	17	89,0		5,3 - 5,4	i		6
0,4 - 0,5	17	89,0		5,4 - 5,5			6
0,5 - 0,6	10	52,3		5,5 - 5,6			6
0,6 - 0,7	7	36,6		5,6 - 5,7			6
0,7 - 0,8	3	15,7	1	5,7 - 5,8			- 6
0,8 - 0,9	4	20,9		5,8 - 5,9			6
0,9 - 1,0	29	138,8		5,9 - 6,0			7
1,0 - 1,1	> 80	> 382,9		6,0 - 6,1			7
1,1 - 1,2	1		2	6,1 - 6,2			7
1,2 - 1,3	1		2	6,2 - 6,3		!	7
1,3 - 1,4	2000		2	6,3 - 6,4			7
1,4 - 1,5			2	6,4 - 6,5			7
1,5 - 1,6			2	6,5 - 6,6			7
1,6 - 1,7			2	6,6 - 6,7			
1,7 - 1,8			2	6,7 - 6,8			7
1,8 - 1,9			2	6,8 - 6,9			7
1,9 - 2.0			3	6,9 - 7,0 7,0 - 7,1			C 5
2,0 - 2,1			3	7,1-7,2			
2,2-2,3			3	7,2 - 7.3			
2,2 - 2,4			3	7,3 - 7,4			
2,4 - 2,5			3	7,4 - 7,5			,
2,5 - 2,6			3	7.5 - 7.6	1		
2,6 - 2,7			3 1	7.6 - 7.7			
2,7 - 2,0			3	7.7 - 7,8		!	,
2,8 - 2,9			3	7,8 - 7.9			
2,9 - 3,0			4	7,9 - 8,0			6
3,0 - 3,1			4	8.0 - 8.1		,	1:
3,1 - 3,2		1	4	8,1 - 8,2			
3,2 - 3,3			4	8,2 - 8,3			ş.
3,3 - 3,4			4	8,3 - 8,4			ç.
3,4 - 3,5		\$	4	8,4 - 8,5			
3,5 - 3,6		1	- 4	8.6 - 8.6			- 1
3,6 - 3,7			4	8.6 - 6.7			- 1
3.7 - 5,6		}	- 4	1.7 8.8			1
3.8 - 3.9			4	1 88 - 88	: !		
3,9 - 4,0		i	5	1 24 54			
4.0 - 4,1		}	5 6	1 S.B. \$1.1			
4.1 - 4.2		!		1 53 4 53			
8.2 - 4,8			- {	91.81			
4.3 - 4.4			6				
4,4 - 4,5 4,5 - 4,6		Ì	Ě	1			
4.6 - 4,7		į	5	1 8.6 - 8.7			
4,7 - 4,8		-	5	2.7 - 8,8			
4.8 - 4.9			5	6,8 - 8,8			20
4,9 - 5,0		-	6	9.9 - 10			


Prova	Pene	trometr	ica Din	amic	ca n°	7	del	22/06/12
CABELL/	VAL	ORI RESI	STENZA					
					Proprietà:	Soc. A	gr. AcLLu	brano s.s.
1 = 20.5 Kg	g		N = N(10)				H = 32 cm	
= 10.0 cn	n ²		D = 3,57 c	m			d = 10 cm	
rofondità	N	Rpd	asta		Profondità	N	Rpd	asta
metri	(colpi)	(Kg/cm ²)	numero		metri	(colpi)	(Kg/cm ²)	numero
0,0 - 0,1	0	0,0	1		5,0 - 5,1			6
0,1 - 0,2	0	0,0	1		5,1 - 5,2	,		6
0,2 - 0,3	0	0,0	1		5,2 - 5,3			6
0,3 - 0,4 0,4 - 0,5	0	0,0	1		5,3 - 5,4 5,4 - 5,5			6 6
0,5 - 0,6	5	26,2	1		5,5 - 5,6			6
0,6 - 0,7	5	26,2			5,6 - 5,7			6
0,7 - 0,8	6	31,4			5,7 - 5,8			6
0,8 - 0,9	3	15,7	1		5,8 - 5,9			6
0,9 - 1,0	3	14,4 14,4			5,9-6,0			7 7
1,0 - 1,1 1,1 - 1,2	7	33,5			6,0 - 6,1 6,1 - 6,2			7
1,2 - 1,3	7	33,5	2		6,2 - 6,3			7
1,3 - 1,4	8	38,3			6,3 - 6,4			7
1,4 - 1,5	11	52,6	2		6,4 - 6,5			7
1,5 - 1,6	9	43,1	2		6,5 - 6,6			7
1,5 - 1,7	7	33,5	2		6,6 - 6,7			7
1,7 - 1,8 1,8 - 1,9	9 13	43,1 62,2	2		6,7 - 6,8 6,8 - 6,9			7 7
1,9 - 2,0	12	52,9	3		6,9 - 7,0			8
2,0 - 2,1	4	17,6	3		7,0 - 7,1			8
2,1 - 2,2	5	22,0	3		7,1 - 7,2			8
2,2 - 2,3	6	26,5	3		7,2 - 7,3			8
2,3 - 2,4	48	211,6	3		7,3 - 7,4			8
2,4 - 2,5 2,5 - 2,6	24 24	105,8 105,8	3		7,4 - 7,5 7,5 - 7,6			. 8
2,6 - 2,7	42	185,2	3		7,5 - 7,5		.	8 8
2,7 - 2,8	67	295,4	3		7,7 - 7,8			8
2,8 - 2,9	>80	>352,7	3		7,8 - 7,9			8
2,9 - 3,0			4		7,9 - 8,0	.		9
3,0 - 3,1			4		8,0 - 8,1			9
3,1 - 3,2 3,2 - 3,3			4		8,1 - 8,2 8,2 - 8,3	- 1		9
3,3 - 3,4		- 1	4		8,3 - 8,4	- 1		9
3,4 - 3,5			4		8,4 - 8,5		i	9 1
3,5 - 3,6	1		4		8,5 - 8,6			
3,6 - 3,7			4		8,6 - 8,7			9 0
3,7 - 3,8			4		8,7 - 8,8	1		9 /8
3,8 - 3,9 3,9 - 4,0			5		8,8 - 8,9 8,9 - 9,0		l	9 10
4,0 - 4,1			5		9,0 - 9,1		- 1	10
4,1 - 4,2			5		9,1 - 9,2			10
4,2 - 4,3			5		9,2 - 9,3			10
4,3 - 4,4			5 5 5 5		9,3 - 9,4			10
4,4 - 4,5			5		9,4 - 9,5			10
4,5 - 4,6 4,6 - 4,7		1	5		9,5 - 9,6 9,6 - 9,7			10 10
4,7 - 4,8	1		5		9,7 - 9,8		-	10
4,8 - 4,9			5	1	9,8 - 9,9			10
4,9 - 5,0	- 1	į	6	- 1	9,9 - 10		- 1	11

SISMICA A RIFRAZIONE

PROFILO SISMICO A RIFRAZIONE onde SH: TOMOGRAFIA

Sezione A – B onde SH: Modello di velocità (modello multistrato)

Interpretazione

Velocità di propagazione delle Onde di taglio

		·					
hi=(m)	Vsi≂(m/s)	hi/vs	$V_{S30} =$	70	and the	707,4688	m/s
1.5	274	0,005474					
1,5	274	0,005474					
1,5	465	0,003226					
1,5	465	0,003226					
1,5	553	0,002712					
1,5	553	0,002712					
1,5	787	0,001906					
1,5	787	0,001905					
1.5	975	0,001538					
1,5	975	0,001538					
1,5	1182	0,001269					
1,5	1182	0,001269					
3,5	1182	0,001269	,				
1,5	1182	0,001269					
1,5	1182	0,001269					
1,5	1182	0.001269					
1,5	1182	0,001269					
1,5	1182	0,001269					
1,5	1182	0,001269					
1,5	1182	0,001269					
30	Š	0,042405					

Il calcolo del parametro Vs30 assume un valore di circa 700 m/s. Si nota un importante contrasto di rigidità sismica entro i primi 20m. Sono state registrate velocità di Vs associabili a bedrock sismico. In base a quanto prescritto nelle N.T.C. 14/01/2008, il valore di Vs30 calcolato dal p.c. risulta associabile ad un suolo di categoria E.

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 205 RT

5RIFERIMENTO PRATICA PDC N. 66 DEL 2011

EDILIZIA

LOCALITÀ PODERE ASCIANELLO,

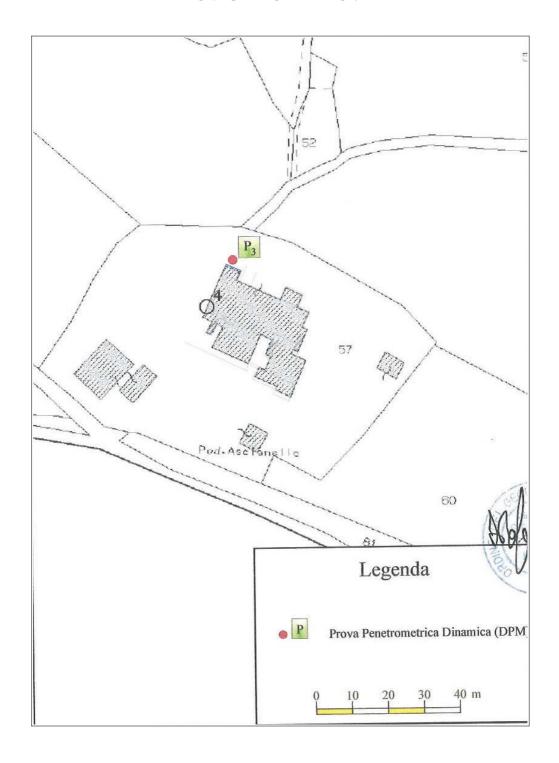
SERRE DI RAPOLANO

PROGETTO REALIZZAZIONE DI UN

LOCALE TECNICO

INTERRATO

NUMERO E TIPO DI N. 1 PROVA


INDAGINE PENETROMETRICA

DINAMICA

DATA INDAGINE AGOSTO 2010

NOTE -

UBICAZIONE PROVE

RISULTATI PROVE

Prova I	^o ene	trometr	ica Din	amic	a n°	3	del	25/08/10
TABELLA	VAL	ORI RESI	STENZA]		10-0: 5340 NG		0.5
83				- E	Proprietà:	Prisma		
M = 20.5 Ko		**************************************	N = N(10)				H = 32 cm	
A = 10.0 cm			D = 3,57 c	m			d = 10 cm	
Profondità	N	Rpd	asta		Profondità	N	Rpd	asta
metri	(colpi)	(Kg/cm²)	numero		metri	(colpi)	(Kg/cm ²)	numero
0,0 - 0,1	1.	5,2	1		5,0 - 5,1	ř .		6
0,1-0,2	, o	0,0	1		5,1 - 5,2			6
0,2 - 0,3	1	5,2	1		5,2 - 5,3			6
0,3 - 0,4	2	10,5	1		5,3 - 5,4			6
0,4 - 0,5	1	5,2	1		5,4 - 5,5			6
0,5 - 0,6 0,6 - 0,7	1	5,2 5,2	1		5,5 - 5,6			6
0,0 - 0,7	1 1	5,2	1		5,6 - 5,7 5,7 - 5,8			6 6
0,7 - 0,0	4	20,9	1		5,8 - 5,9			6
0,9 - 1,0	5	23,9	2		5,9 - 6,0			7
1,0 - 1,1	5	23,9	2		6,0 - 6,1			7
1,1 - 1,2	6	28,7	2		6,1-6,2			
1,2 - 1,3	8	38,3	2 2 2		6,2 - 6,3	8		7 7
1,3 - 1,4	6	28,7	2	100	6,3 - 6,4			7
1,4 - 1,5	9	43,1			6,4 - 6,5			7
1,5 - 1,6	9	43,1	2		6,5 - 6,6		a .	7
1,6 - 1,7	10	47,9	2		6,6 - 6,7			7 7
1,7 - 1,8	10 11	47,9 52,6	2 2 2		6,7 - 6,8	88 5		7
1,8 - 1,9 1,9 - 2,0	13	57,3	3	15	6,8 - 6,9 6,9 - 7,0			8
2,0 - 2,1	10	44,1	3		7,0 - 7,1			8
2,1 - 2,2	9	39,7	3		7,1 - 7,2			8
2,2 - 2,3	10	44,1	3		7,2 - 7,3			8
2,3 - 2,4	9	39,7	3		7,3 - 7,4			8
2,4 - 2,5	9	39,7	3		7,4 - 7,5			8
2,5 - 2,6	6	26,5	3		7,5 - 7,6			8
2,6 - 2,7	9	39,7	3		7,6 - 7,7			8
2,7 - 2,8	9	39,7	3		7,7 - 7,8			8
2,8 - 2,9	8 5	35,3	3		7,8 - 7,9			8
2,9 - 3,0 3,0 - 3,1	3	20,4 12,3	4 4		7,9 - 8,0 8,0 - 8,1			9 9
3,1 - 3,2	11	45,0	4		8,1 - 8,2			9
3,2 - 3,3	17	69,5	4		8,2 - 8,3	I		9
3,3 - 3,4	17	69,5	4		8,3 - 8,4	i		9
3,4 - 3,5	9	36,8	4		8,4 - 8,5			9
3,5 - 3,6	21	85,8	4		8,5 - 8,6			9
3,6 - 3,7	24	98,1	4		8,6 - 8,7			9 9
3,7 - 3,8	27	110,4	4	İ	8,7 - 8,8			
3,8 - 3,9	38	155,3	4		8,8 - 8,9			9
3,9 - 4,0 4,0 - 4,1	43 37	163,8 141,0	5 5		8,9 - 9,0			10
4,0 - 4,1	37	141,0	5		9,0 - 9,1 9,1 - 9,2			10 10
4,2 - 4,3	29	110,5	5		9,2 - 9,3	1	2	10
4,3 - 4,4	28	106,7	5	į	9,3 - 9,4			10
4,4 - 4,5	27	102,9	5	İ	9,4 - 9,5	į		10
4,5 - 4,6	23	87,6	5		9,5 - 9,6			10
4,6 - 4,7	25	95,2	5		9,6 - 9,7			10
4,7 - 4,8	41	156,2	5		9,7 - 9,8		Sec.	10
4,8 - 4,9	37	141,0	5		9,8 - 9,9	1		10
4,9 - 5,0	33	117,7	6		9,9 - 10	- 10		11

COMUNE DI RAPOLANO TERME

(PROVINCIA DI SIENA)

SCHEDA INDAGINE 206 RT

5RIFERIMENTO PRATICA PDC N. 20 DEL 2010

EDILIZIA

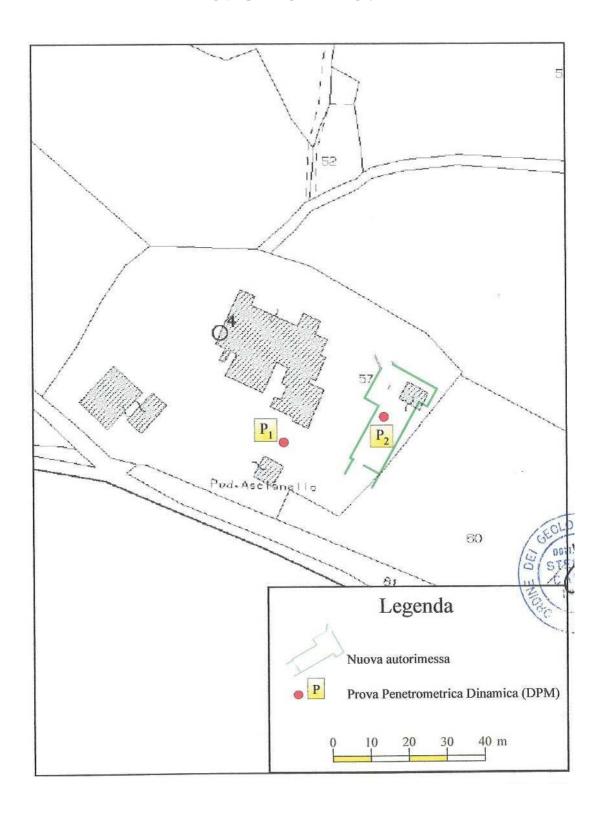
LOCALITÀ RAPOLANO TERME

PROGETTO REALIZZAZIONE DI

UN'AUTORIMESSA

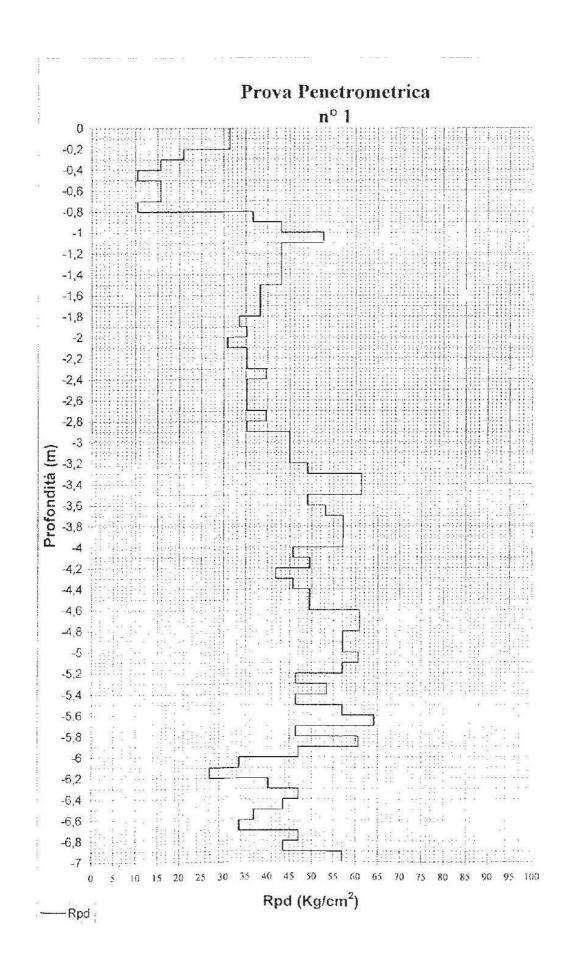
INTERRATA

NUMERO E TIPO DI N. 2 PROVE


INDAGINE PENETROMETRICHE

DINAMICHE

DATA INDAGINE GIUGNO 2010


NOTE -

UBICAZIONE PROVE

RISULTATI PROVE DN 1

Prova I	Pene	trometi	ica Dina	mica n°	1	del	20/07/09
FABELLA	VAL	ORI RESI	STENZA	Proprietà:	Prisma		0
M = 20.5 Kg			N = N(10)			H = 32 cm	
A = 10.0 cm			D = 3,57 cm			d = 10 cm	
Profondità	N	Rpd	asta	Profondità	N	Rpd	asta
metri	(colpi)	(Kg/cm²)	numero	metri	(colpi)	(Kg/cm²)	numero
0,0 - 0,1	6	31,4	1	5,0 - 5,1	17	60,6	6
0,1-0,2	6	31,4	1	5,1 - 5,2	16	57,1	6
0.2 - 0.3	4	20,9	1	5,2 - 5,3	13	46,4	6
0,3 - 0,4	3	15,7	1	5,3 - 5,4	15	53,5	6
0,4 - 0,5	2	10,5	1	5,4 - 5,5	13	46,4	6
0,5 - 0,6	3	15,7	1	5,5 - 5,6	16	57,1	6
0,6 - 0,7	3	15,7	1	5,6 - 5,7	18	64,2	6
0,7 - 0,8	2	10,5	1	5,7 - 5,8	13	46,4	6
0,8 0,9	7	36,6	1	5,8 - 5,9	-7	60,6	6
0,9 - 1,0	9.	43,1	2	5,9 -6,0	14	47,0	7
1,0 - 1,1	11	52,6	2	6,0 - 6,1	10	33,5	7
1,1 - 1,2	9	43,1	2 2	6,1-6,2	8	26,8	7
1,2 - 1,3	9	43,1	2	6,2 - 6,3	12	40,2	7
1,3 - 1,4	9	43,1 43,1		6,3 - 6,4	14	47,0	7
1,4 - 1,5 1,5 - 1,6	8	38,3	2 2	6,4 - 6,5	13	43,6	7 :
1,6 - 1,7	8	38,3	2	6,5 - 6,6 6,6 - 6,7	11 10	36,9	7
1,7 - 1,8	8	38,3	2	6,7 - 6,8	14	33,5	7
1,8 - 1,9	7	33,5	2	6,8 - 6,9	13	47,0 43,6	7
1,9 - 2,0	8	35,3	3	6,9 - 7,0	18	57,0	á
2,0 - 2,1	7	30,9	3	7.0 - 7.1	101	0,,0	8
2,1-2,2	8	35,3	3	7,1 - 7,2	-		8
2,2 - 2,3	8	35,3	3	7,2 - 7,3		1	8
2,3 - 2,4	9	39,7	3	7,3 - 7,4	1	ı	8
2,4 - 2,5	8	35,3	3	7,4 - 7,5			8
2,5 - 2,6	8	35,3	3	7,5 - 7,6			8
2,6 - 2,7	8	35,3	3	7,6 - 7,7			8
2,7 - 2,8	9	39,7	3	7,7 - 7,8			8
2,8 - 2,9	8	35,3	3	7,8 - 7,9	1	1	8
2,9 - 3,0	11	45,0	4	7,9 - 8,0	1		9
3,0 - 3,1	11	45,0	4	8,0 - 8,1			9
3,1 - 3,2 3,2 - 3,3	11	45,0	4	8,1 - 8,2			S
3,3 - 3,4	15	49,1 61,3	4	8,2 - 8,3	1		9
3,4 - 3,5	15	61,3	4	8,3 - 8,4 8,4 - 8,5			9
3,5 - 3,6	12	49,1,	4	8,5 - 8,6	1		9
3,6 - 3,7	13	53,1	4	8,6 - 8,7	f		9
3,7 - 3,8	14	57,2	4	8,7 - 8,8			9
3,8 - 3,9	14	57,2	4	8.8 - 8.9			9 6
3,9 - 4,0	15	57,1	5	8,9 - 9,0		ì	10/5
4,0 - 4,1	12	45,7	5	9,0 - 9,1	į	ł	100/
4,1 - 4.2	13	49,5	5	9,1 - 9,2			10
4,2 - 4,3	11	41,9	5	9.2 - 9,3			他人
4,3 - 4,4	12	45,7	5	9.3 - 9,4			10(%)
1,4 - 4,5	13	49,5	5	9,4 - 9,5			10
4,5 - 4,6	13	49,5	5	9,5 - 9,6			10
1,6 - 4,7	16	61,0	5	9,6 - 9,7			10
4,7 - 4,8	16	61,0	5	9,7 - 9.8			10
1,8 - 4,9	15	57,1	5	9,8 - 9,9			10
1,9 - 5,0	16	57,1	6	9,9 - 10			11

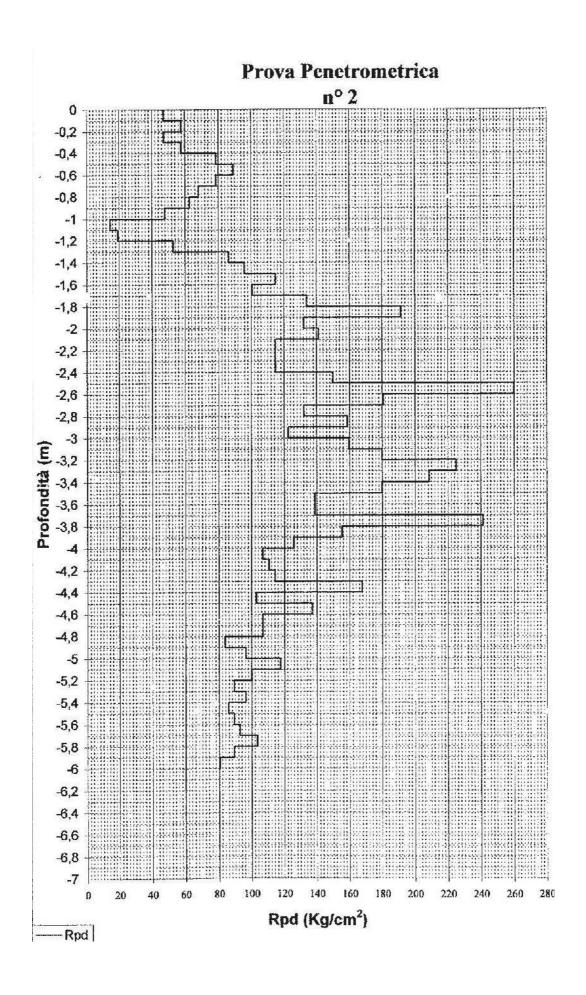
						ſ	Proprietà		Prisma			
		M = 20.5 A = 10.0			N = N(10) D = 3,57 cm				H = 32 c 5 = 10 cn			
orofondità	PARA		- Marie and the second second	CLABOR	AZIONE STAT	ISTICA	THE CONTRACT AND ADDRESS OF	na, hiter over a solder of Morta for	VALORE	THOMSE IFMAN	Kept.	1 24
(m)	METRO	Md	mп	Max	(Md+mn)/2	e e	l∆d-s	146+8	CARATT.	13		X 1, 112 5
0,0 -0,8	N	3,6	2,0	6,0	2.8	1,6	2,0	5.2	4	0,84	3	i è
	Rpd	19,0	10,5	31,4	14,7	8,4	10,6	27,3	5€			
0,8 -1,8	N	8,7	7,0	11,0	7.9	1,1	7,6	9,8	ţ Ş	0,84	7	1 7
ocean Marenage water	Rpd	41,9	36,6	52,6	39,3	4,6	37,4	46,5	42			i .
1,8 -2,9	N	8,0	7,0	9,0	7,5	0,6	7,4	8,6	8	0,;	7	4.
	Rpd	35,5	30,9	39,7	33,2	2,5	33,0	38,0	30			
2,9 -4,6	N	12,8	11,0	15.0	11,9	1,4	11,3	14,2	13	0,84	11	1
	Rpd	50,7	41.9	61,3	46,3	6,1	44.6	50,8	£1			
4,6 -6,0	N	15,4	13,0	18,0	14,2	1,6	13,8	17,0	15	0.84	13	ļ ļ
ost were over the self-	Rpd	55,4	46,4	64,2	50,9	6,4	49,0	61,7	55		}	
6,0 -7,0	N	12,3	8,0	18.0	10,2	2,8	9,5	15,1	12	0,84	10	ÿ.
	Rpd	40,9	26,8	57,0	33,9	8,6	32.3	49,5	41			
			10]	entativo di c	correla	zione		10			
1ax = valo	ne medio re minimo re massim o quadrati		des	Rpd = i N Nspt = i	coef, teorico d resistenza dina numero di colp numero colpi p retto = numero	mica all Ji (punta rova SP	a punta () DPM (T (avanz	Kg/cm²) avanzam amento 3	ento 5-10 0 cm+; Ns	ons) pr = 350		

Prov	va Pen	etron	retric	a L)inam	ica r	ì ·	*			
PAR/	METRIC	SEOTE	ONICI		Section and the county or but to	j					
Strate	Profondità	Rpd	Rspt		MATÜ	RA GRA	NULARI	;	12	i milio	
r,	(m)	Kg/cm ²	1	Dr	(°	E'	ysat	γd	C.T	7.51	1 (1)
1	8,0-0.0	19	3	11	27,2	214	1,86	1,38			1
2	0,8 -1,8	42	7	25	28,8	245	1,90	1.46	(4) ±		1
3	1.8 -2,9	36	6	22	28,4	238	1,89	1,43	1904		
4	2,9 -4,6	51	8	28	29,2	253	1,91	1 46	je je		
5	4,6 -6,0	55	9	32	29,6	261	1,92	1,48			
6	6.0 -7.0	41	7	25	28,8	245	1,90	1,45			Ī

Nspt = numero colpi prova SPT (avanzamento δ = 10 cm)

Dr % = densità relativa

(°) = angolo d'attrito efficace


W % = contenuto in acqua e = indice dei vuoti

Rpd (Kg/cm²) = resistenza modia a la punta γ sat = poso di volume saturo

y d = peso di volume secco E' (Kg/cm²) = modulo di defonoazione ritena Cu (Kg/cm²) –coesione non drenate

DN 2

rova F	ene	trometr	ca Dina	mica n	2	del	20/07/09
TABELLA	VALO	ORI RESIS	STENZA	Proprietà:	Prisma		
						H = 32 cm	
M = 20.5 Kg			N = N(10)			d = 10 cm	
A ≈ 10.0 cm			D = 3,57 cm asta	Profondità	IN	Rpd	asta
Profondità metri	N (colpi)	Rpd (Kg/cm²)	numero	metri	(colpi)	(Kg/cm ²)	numero
				- A - E - A	00		
0,0 - 0,1	9	47,1	1	5,0 - 5,1	33 28		6 6
0,1 - 0,2	. 11	57,6	1	5,1 - 5,2 5,2 - 5,3	25	27.2	6
0,2 - 0,3	9	47,1 57,6	1 1	5,3 - 5,4	27	96,3	6
0,3 - 0,4	11 15	78,5	1	5,4 - 5,5	24	85,6	6
0,4 - 0,5	17	89,0	1 1	5,5 - 5,6	25	89,2	6
0,5 - 0,6 0,6 - 0,7	15	78,5	1	5,6 - 5,7	26		6
0,0 - 0,7	13	68,0	1	5,7 - 5,8	29		6
0,7 - 0,9	12	62,8	i	5,8 - 5,9	25		6
0,9 - 1,0	10	47,9	2	5,9 - 6,0	24	80,5	7
1,0 - 1,1	3	14,4	2	6,0 - 6,1			7 7 7
1,1 - 1,2	4	19,1	2	6,1 - 6,2		•	7
1,2 - 1,3	11	52,6	2 2	6,2 - 6,3			7
1,3 - 1,4	18	86,1	2	6,3 - 6,4			7 7 7
1,4 - 1,5	20	95,7	2	6,4 - 6,5			7
1,5 - 1,6	24	114,9	2	6,5 - 6,6	1		7
1,6 - 1,7	21	100,5	2	6,6 - 6,7			7 7
1,7 - 1,8	28	134,0	2 2	6,7 - 6,8			7
1,8 - 1,9	40	191,4	2	6,8 - 6,9		1	8
1,9 - 2,0	30		3	6,9 - 7,0	I		8
2,0 - 2,1	32		3	7,0 - 7,1	1		8
2,1 - 2,2	26			7,1 - 7,2			8
2,2 - 2,3	26	114,6		7,2 - 7,3 7,3 - 7,4			8
2,3 - 2,4	26			7,4 - 7,5			8
2,4 - 2,5	34 59		3	7,5 - 7,6	1		8
2,5 - 2,6	41		0.000	7,6 - 7,7			8
2,6 - 2,7 2,7 - 2,8	30			7,7 - 7,8		iii	8
2,8 - 2,9	36	63	1507	7,8 - 7,9			8
2,9 - 3,0	30	1973		7,9 - 8,0			9
3,0 - 3,1	39			8,0 - 8,1			9
3,1 - 3,2	44		4	8,1 - 8,2			9
3,2 - 3,3	55	224,8	4	8,2 - 8,3	35		9
3,3 - 3,4	51			8,3 - 8,4			9
3,4 - 3,5	44			8,4 - 8,5			9
3,5 - 3,6	34		4	8,5 - 8,6			9
3,6 - 3,7				8,6 - 8,7			9
3,7 - 3,8			4	8,7 - 8,8		1	9
3,8 - 3,9			4	8,8 - 8,9			10 /
3,9 - 4,0			5	8,9 - 9,0 9,0 - 9,1			10
4,0 - 4,1	28		5	9,0 - 9,1			10
4,1 - 4,2	29 30		5	9,1 - 9,2		1	10
4,2 - 4,3			5	9,3 - 9,4			10
4,3 - 4,4			5	9,4 - 9,5			10
4,4 - 4,5			5	9,5 - 9,6			10
4,5 - 4,6 4,6 - 4,7			5	9,6 - 9,7			10
4,6 - 4,7			5	9,7 - 9,8			10
4,7 - 4,8	30.00		5	9,8 - 9,9			10
4,8 - 4,9	10.0000			9,9 - 10			11

ELABOR	AZION	E SIAI	ISTICA	<u> </u>		Г	Danalasi		Prisma		375	
						Ļ	Proprietà	•	Prisma			
546		M = 20.5 A = 10.0	Kg çm"		N = N(10) D = 3,57 cm		•		H = 32 cm δ = 10 cm			0.5600000000000000000000000000000000000
Profondità	PARA-		Control (40)	ELABOR	AZIONE STAT	FISTICA			VALORE		Nspt	Nspt
(m)	METRO	Md	mn	Max	(Md+mn)/2	s	Md-s	Md+s	CARATT.	ß		corretto
0,0 -1,5	N	11,9	3,0	20,0	7,4	4,7	7,1	16,6	12	0,84	10	10
SS 00	Rpd	60,1	14,4	95,7	37,2	23,7	36,4	83,8	60			
1,5 -2,4	N	28,1	21,0	40,0	24,6	5,5	22,6	33,6	28	0,84	24	21
COLL MASS	Rpd	128,7	100,5	191,4	114,6	26,7	102,0	155,4	129			
2,4 -3,9	N	41,9	30,0	59,0	35,9	9,9	31,9	51,8	42	0,84	35	28
	Rpd	175,4	122,6	260,1	149,0	41,4	134,0	216,8	175			
3,9 -4,6	N	32,4	27,0	44,0	29,7	6,0	26,5	38,4	32	0,84	27	20
and the state of	Rpd	123,5	102,9	167,6	113,2	22,7	100,8	146,3	124			
4,6 -6,0	N	26,5	22,0	33,0	24,3	2,7	23,8	29,2	27	0,84	22	15
SEMES SERVES	Rpd	95,5	80,5	117,7	88,0	10,4	85,1	105,9	96			
		4		1	entativo di	correla	zione	37. 1. 3				
Max = valo	re minimo re massim			Rpd = N = Nspt =	coef. teorico o resistenza dina numero di col numero colpi retto = numero	amica all pi (punta prova SF	la punta (a) DPM (PT (avanz	Kg/cm²) avanzan amento:	nento δ=10 30 cm) ; Ns	cm) pt == βN	ſ	

Strato	Profondità	Rpd	Nspt		NATU	RA GRA	NULARI	3	N	IATURA	COES	VA
nº	(m)	Kg/cm ²		Dr	φ'	E'	γ sat	γd	Cu	γsat	W	e
1	0,0 -1,5	60	10	35	30,0	268	1,93	1,50				
2	1,5 -2,4	129	21	52	33,3	353	1,99	1,60				
3	2,4 -3,9	175	28	61	35,4	404	2,12	1,66				
4	3,9 -4,6	124	20	50	33,0	345	1,99	1,59				1
5	4,6 -6,0	96	15	43	31,5	307	1,96	1,54				J. Wegan